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ADDED MASSES AND FORCES ON TWO BODIES
APPROACHING CENTRAL IMPACT IN AN INVISCID FLUID

ABSTRACT

In several papers, which will be referenced, a procedure based on integral equations
has been developed and applied for determining the interaction forces on two bodies
approaching central impact in an inviscid fluid. The present work was undertaken to
evaluate the accuracy of the results from that procedure by applying it to a pair of circles
and a pair of spheres with which one could obtain solutions, as accurate as desired, by the
method of successive images. A second purpose was to refine the procedure so that
accurate solutions could be obtained at closer distances than heretofore.

Solutions by the method of images, given by Hicks and Herman over 100 years
ago, are not very clear, and since we have significantly extended their theory in the present
work, it seemed appropriate to include a new derivation which we consider more rational.
The extensions of the theory consists of:

1) a truncation correction of the infinite series of the doublet strengths for the added
masses and their derivatives, which can then be calculated accurately with a moderate
number of terms even when the gap between the bodies is very small;

2) asymptotic formulas for the added masses and their derivatives at small gaps
which show that, for circles, the derivatives with respect to a parameter asymptotically
proportional to the square root of the gap, are finite, and that derivatives with respect to the
gap approach infinity inversely as the square root of the gap;

3) a treatment of the case of a circular cylinder or a sphere, or bodies of arbitrary
shape approaching a wall, showing that the forces on the body and wall are repulsive and
of equal magnitude;

4) a treatment of uniform convergence of the series for the added masses and their
derivatives, which shows that the infinite series for the added-mass coefficients converge
uniformly for all values of the gap in the closed region from zero to infinity; and that the
series of the derivatives with respect to the parameter of item 2) converge uniformly for all
values of the gap except zero, where the series converges but its sum is discontinuous.

In Part I, refinements of the integral-equation procedure are presented. Two
problems required resolution for small gaps. One is the sharp peaks of the kernels of the



integral equations and of the source distributions on the body surfaces (the unknown
functions of the integral equations) in the neighborhood of the gap. The other is that,
previously, derivatives of the added masses, obtained by numerical differentiation, were
inaccurate and gave large errors in the calculated forces. Simple solutions of both problems
with the latter still using numerical differentiation, are presented. Applications to various
combinations of circle pairs and to equal spheres gave agreement with exact values to six
decimals for the added-mass coefficients and to five for their derivatives. To illustrate the
applicability of the new procedures to a noncircular cylinder, the two cases of a 2 to 1
ellipse approaching a circle in the direction of its major or minor axes are also presented.

It is concluded that we now have the capability of obtaining accurate results for
interaction forces for two-dimensional forms and bodies of revolution in an inviscid fluid.
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NOMENCLATURE

a radius of circle or sphere

a,a, lengths of semi-arcs of an ellipse

an nth term of a series

b radius of circle or sphere

c distance between centers of circles or spheres

o derivative of ¢ with respect to §

€1, closed curves of section of cylinders 1 and 2

dn,da distance of nth doublet within one cylinder or sphere from

center of other

g gap or minimum distance between two bodies
kq.kq0.ky added-mass coefficients

1.<1:k12rk2 derivatives of added-mass coefficients with respecttocor g
ki,k{o/k; derivatives of added-mass coefficients with respect to {

n an index

npng outward normal distance at point P or Q of a body surface
n unit vector along outward normal to a surface

Pn numerator of nth convergent of a continued fraction

In denominator of nth convergent of a continued fraction
r1T, radial distances from center of circles 1 or 2

pQ distance between points P and Q

s a+b; also arc length along ¢, or ¢,

X1,X9 x-coordinates of centers of two circles or spheres

A area of section of a cylinder

A11,A15,A,, added masses

GGy curvatures of curves ¢; and ¢,

Cr1.Cp force coefficients for body 1 moving and body 2 and fluid at rest
Cr.Cro force coefficients for body 2 moving and body 1 and fluid at rest
D a factor of rpq for two spheres

E©® complete elliptic integral of second kind

F,F, interaction forces on bodies

K(&) complete elliptic integral of first kind

K®,Q kernel of integral equation



M, M,

P,Q

’ ’

PP,

R*(N)
R(N)

masses of displaced fluid

the number of terms of a truncated infinite series

fixed and varying points on a body

point of minimum distance on body 1 from point P> on body 2,
and on body 2 from point P; on body 1

remainder due to truncating an infinite series at Nth term
approximation to R*(N) by a trapezoidal integral

radial distance from center of sphere 1 or sphere 2

surface area of a three-dimensional body

kinetic energy of fluid

velocity of translation of body 1 or 2 in direction of x-axis

defined by a2 = ¢2- a2 - b2

defined by B2 = ab

defined by y2 = 2gs/p?

doublet strengths at distances dn or dn from centers of circles or
spheres

parameter for expressing Herman's formulas in parametric form
defined by n = a2 /2

polar angle in circle 1 or 2; also angle with x-axis in spheres
supplement to 62, i.e. 02 =71 -6

angles 6 at points P1,P; for circles or spheres

roots of quadratic equation A2 - a2\ + 2 =0

defined by p = B/s

1 1
defined by v; =5 (- yy), vo =5 (T - yy)

parameter of elliptic integrals, £2 + £2 = 1

mass density of fluid; also used as argument of power series
defined by A} - A3; 64, 0, also used as source strengths on bodies
source distribution on the j-th body due to motion of the i-th
defined by 1, = 6, /(c,f*"2)

unit potentials, defined by ® = U,¢; + Uy0,

third coordinate of spherical coordinates in spheres 1 and 2

a function of 6, or 95 used to apply the 'most accurate quadrature

formula' with nonuniform intervals in 6



20,23 defined in egs. (41b) and (76)
D total velocity potential due to translational motion of two bodies
along their line of centroids when the fluid is at rest at infinity

viil



Added Masses and Forces on Two Bodies Approaching Central
Impact in an Inviscid Fluid

ntr ion

In connection with the problem of an ice mass approaching central im-
pact with an offshore structure, it is important, for design purposes, to esti-
mate the magnitude of the interaction force on the structure prior to and dur-
ing impact. Previous literature on this problem was reviewed in papers by
Landweber, Chwang, and Guo [1], and more recently by Guo and Chwang (2],
[3], the latter two mainly on the broader problem of oblique impact, with
some contributions on central-impact. In all of these papers, the fluid was
assumed to be inviscid and the flow irrotational, so that the forces were en-
tirely due to the inertia of the two bodies and the fluid.

As is shown in [1], for central impact, the interaction forces on the bod-
ies due to the fluid can be expressed in terms of three added masses and their
time derivatives. The added masses, at each of a succession of instants, are
then obtained by applying generalizations of the Taylor added-mass formula,
given by Landweber [4], Landweber & Yih [5], and Landweber and Chwang [6]
to the sources and doublets on or in each body. The latter were obtained by
solving, numerically and simultaneously, a pair of Fredholm integral equa-
tions of the second kind. These were solved by discretizing each integral
equation into a set of linear equations.

Two major difficulties were encountered which affected the accuracy of
the numerical results when the minimum distance between the bodies was
small. One is due to the property that the integrands of the integral equations
peak sharply at points of the body surfaces which are in the neighborhood of
the eventual contact point when the bodies have nearly met; the other that
the absolute value of the time derivatives of the added masses approach
infinity as the bodies approach contact. Consequently, accurate results for the
added-mass derivatives could not be obtained by direct application of
numerical differentiation.

Techniques proposed for overcoming these two difficulties, described
in three papers, were developed for a pair of circular cylinders, because, for
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this case, results from the integral-equation solution can be compared against
those from the method of successive images, which can be made as accurate
as one desires. Isaacson and Cheung [7] resolved the peaking problem by in-
creasing the number of points in the neighborhood of the peak, but gave no
details concerning the quadrature formulas used. Nor was the problem of
numerical differentiation of added masses mentioned.

In Ref. [1], “the most accurate quadrature formula” [8], hereafter called
the MAQF, which requires a smooth, cyclic integrand and uniform intervals,
was applied, with the number of points used increased as the gap between the
bodies decreased. This procedure was inefficient, requiring a huge number of
points at the smallest gaps, where the Cray supercomputer had to be used.
The added-mass derivatives were obtained by using computer software to
“smooth” the added-mass data before the numerical differentiation.

In Ref. [2], the peak was partially removed by a technique which is
available when the kernel can be integrated exactly; see Miloh and Landweber
[9]. Also, as in [7], the points on the circles were distributed so that at least half
of their total number were concentrated in the small region of the peaks.
This combination yielded good agreement with the results by successive
images, but has the disadvantage that the procedure used to partially remove
the peak of the kernel is not an option for bodies of arbitrary shape. To
overcome the second difficulty, numerical differentiation was avoided by dif-
ferentiating the integral equation pair and solving the set of four integral
equations simultaneously for the source strengths and their derivatives. The
kernels of these new integral equations and their solutions for the source-
strength derivatives have much stronger peaks as the gap approaches zero, so
that four Gauss quadrature formulas, each of order 40 were used to obtain
accurate results at small gaps. The Cray supercomputer was required to
perform these calculations. Since the solution of the original pair of integral
equations had required most of the computer time, this procedure for
avoiding numerical differentiation has more than doubled the computing
effort on this problem.

In the present paper, simple resolutions of both difficulties are pre-
sented. For the first, the peak is removed by a procedure suitable for arbitrary
shapes, and the variable of integration is changed so that many more points
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are concentrated in the neighborhood of the peak, without sacrificing either
the periodicity or the interval-uniformity condition for applying the MAQF.
For the second, the variable of differentiation is changed so that the added
masses vary nearly linearly with that parameter when the gap is small. In
terms of that variable, the errors of numerical interpolation and
differentiation are much less than with the original one.

The aforementioned change of differentiation variable is suggested by a
parametric form of Herman’s result [10] for the successive doublet strengths
in the dircles, which was also used, but for other purposes, by Mitra [11}, and
for a special case which will be described subsequently, by Shail [12]. By
applying this form, efficient procedures for summing the doublet series for
the added masses, and asymptotic formulas for the added masses and their
derivatives at small gaps were developed. These are new results in the
classical theory of successive images, which was considered to have been
solved completely by Hicks [13, 14] and Herman [10] over one hundred years
ago. Their papers on the motions of two spheres along the line of centers
present two different closed-form solutions for the positions and strengths of
the successive doublets. Their results for the positions are also valid for the
motions of two circular cylinders, and, by a slight modification of their
analysis, the strengths of the corresponding doublets can also be obtained.
However, their derivations are difficult to comprehend, especially that of
Hicks, partly because they did not take full advantage of the theory of
continued fractions and recurring series which was well known at the time of
their papers. Although a clearer derivation, based on these algebraic theories,
had been devised by one of the present authors several years ago, it was not
considered worth publishing at the time; but now that we have significantly
extended the classical theory, it appears appropriate to include these devel-
opments as part of a new derivation of the successive-image formulas. Guo
and Chwang [2] also show Herman’s solution [8], but without derivation or
attribution or any new results in the successive-image theory of circles or
spheres moving along their line of centers. They also claim, that a “closed-
form” solution for the added masses “will be derived”, but that did not appear
and, probably, does not exist.



The plan of the present paper is as follows. In Part I, a new derivation
of Herman's formulas for the added-masses by the method of successive
images will be presented, including a new, efficient, and accurate procedure
for computing the added masses, which also yields their asymptotic formulas
when the gap between the bodies is small. Since the added masses are
obtained from an infinite series of doublet strengths, and this series must be
differentiated term-by-term, it is important to investigate its uniform con-
vergence. This was undertaken by Guo and Chwang [2,3], but their treatment
is incomplete, proving only a necessary condition for ordinary convergence.
Hence proofs of uniform convergence will be presented.

In Part II, the method of integral equations for obtaining the added
masses will be treated. Procedures for reducing the peaks of the kernel and
discretizing the integral equations by means of the MAQF, but with
nonuniform intervals which concentrate points in the neighborhood of the
peaks, will be presented. Lastly, a procedure for obtaining accurate results for
the added-mass derivatives by numerical differentiation will be described.
Added masses, their derivatives, and interaction forces for various cases will
be computed and compared with the 'exact' results from Part L



Part I: Solution for a Pair of Circles or Spheres by Method of Successive
Images

1. Recurrence formulas for doublet strengths; added masses

Circles of radii a and b are moving with velocities Uy and U; along
their line of centers which will be taken at the x-axis. Denote the centers of
the circles by A and B, and their x-coordinates by x; and x3. Put ¢ = x5 - x1; see
Fig. 1.

The fluid is assumed to be inviscid and incompressible and the flow ir-
rotational. The velocity potential for the fluid, which is assumed to be at rest
at infinity, and contain no other stationary or moving boundaries, may be
written in the form

D = U191 + Ut (1)

where ¢, is the velocity potential when Uy =1 and U3 = 0, and ¢ that when
Uz =1and Uy = 0. In terms of separate polar coordinate systems (r1,01) and
(r2,082) with centers at points A and B and 81 and 87 measured from the x-axis,
the boundary conditions are

901\ 001 _ . (9%2) _, (%%2) _
(an }Fa-cos 01, (arz 2=b-O, (arlja-o, (arz)a—cos 07 (2)

We shall apply the well-known method of successive doublet images at
alternate inverse points in the circles to determine added masses and forces.
For this purpose, we need to derive analytical expressions only for the case U
=1, Uz = 0, since that for U; = 0, Uz = 1 could be obtained by permuting
indices. For the doublets within the circle about A, let dap, 820, n =0, 1, 2,...,
denote the distances from B and their strengths, respectively. Also, for the
doublets within the circle about B, let dap-1, 62n-1, 1t = 1, 2, 3,... denote the dis-
tances from A and their strengths. Then we have, successively,

a b
do=¢, 8p=a2 &n=-%n1 (m)z, d2n-1 =- d2n-2 (32—;5)2 (3)

which gives



ab So(ab)2n
b2n = S2ne2 (dZn-ZdZn-l)z = = (dodidz-dgp 2 1= 0L )
Then we obtain from (3)
(ab)?n

S2n1 = - (G d1dy-dzn2)? ©

Here the d's are successively given by the inversion formulas

a2 b2

doyn=c- dord don-1=c- Ao (6)

The doublet strengths can then be computed successively from (3).

When circle B is moving with unit velocity in the positive x - direction

and circle A is at rest, new sets of d's and &'s are generated. Let dy, 1,81, N =

1,2,3,... denote distances from A and the doublet strengths at those locations

within circle B, and d;n, S;n, n = 0,1,2,... the distances from B and doublet

strengths within circle A. Then (3) and (6) are modified, by interchanging a
and b, to become

* * * * b * * a
dy=c, y=b2 By =-8y1 (T2 By =" () (72)
2n-1 2n-2

* b2 * a2

dyy=c-—— dyp1=¢c-—— (7b)

don-1 don-2
Similarly,

* (ab)2n

50(ab) . (ab)2n

821’1 ST o # * »
(d, d; dy---dyp9)

q= 8

(do dl dZ"’dZn-Z)2



Although the recurrence formulas are identical with those of (3) and (6), the
change in the initial values yields different sets of numbers for the d's and &'s.

As is shown in [1], three added masses, A11, A2 and A1, occur in the
equation of motion of a pair of bodies along their line of centroids when the
fluid is at rest at infinity. Here A1 and A3, can be obtained from the general-
ized Taylor formulas of Landweber [4] for the three dimensional case, or of
Landweber and Yih [5] for the two- and three-dimensional cases. These give
expressions for the added masses of a moving body, when all other bodies and
boundaries are at rest, in terms of the sum (or integrals) of the source mo-
ments and doublet strengths within or on the surface of the moving body.
Reference [6], by Landweber and Chwang, gives a similar expression for A1z in
terms of the sources in or on a stationary body induced by the moving one.
Guo and Chwang [2] noted that the contribution from the doublet strengths
was not shown explicitly in [6] and included it in their formulation. That was
an oversight in [6], although the source-moment formula could be considered
to include the doublet strengths since the strength of a doublet is defined by
the moment of its source-sink pair. The resulting expressions for the added
masses for the two circular cylinders are then

A11=7p (22 82n - a2) = mp (a2 + 227 &) 9
oo ¥ oo ¥
Ap=mp(2I53, - b2 =mp (b2 + 2573, ) (10)
o0 * o0
A1z =2mp I, 82n_1 =27p 2, Sn1 (11)

Here p is the two-dimensional (2-D) mass density of the fluid.

If the bodies are spheres instead of circular cylinders, then the positions
of the successive doublet images are also given by (6) and (7), but the strengths
of the doublets are altered. Instead of (3), (4), (5), (7) and (8), we would have

1 a b
do=c 8o=52 Sm=-On1(g P dm1=-Omi1(g )? @)



Then

_ @)r ., ,
820 = 80 3,y @)
__g (et . 1. (@)t o, ,
San1 =8 by g~ 4" =" 2laar..dpnd)] 57
and
» LA | » » b . » a ,
do =cC 80 =2 b3 8Zn =- 8Zn-l )3 52n-1 =- %n—Z —» @)
n-1 d2n-.'2
* * b n * 1 b)n
i A ®)
-~ d, dy.dop g d, dy.--don g

For the spheres, the three-dimensional form of the added-mass for-
mula must be used. In terms of the masses of displaced fluid of the spheres,

4 4
M = gnpa3 and Mj = §1tpb3, where p is the mass density of the fluid, we
obtain

oo o0 1 M 6 _ ,
A11 =4mp Zg don - M1 = 4np(Z; &on + ga3) =7 1+ 3 Z, on) 9)

My, 6 ot
Az =5 (1 +i3 17 &) (10"

A1z = 4mp 27 83n-1 = 47p X7 By ar

Because the subsequent derivations of the d's and &'s for the circular
cylinders and the spheres are very similar, only those for the former will be
presented, and the corresponding results for spheres will be collected in a sep-
arate section.



2. Forces; added-mass derivatives

Once the added masses are known, the interaction forces F; and F3 on
the bodies can be obtained from Lagrange's form of the equations of motion

d oT 9T

—_— 12
dt 30, . F1 (12)
d 0T dT

———_.—=-F 13
dtau, axy 2 (13)

as is shown in Ref. [1]. Here T denotes the kinetic energy of the fluid,

2
2T = Ay U- + 2A12 UjUz + ApUs (14)

Expressions for F1 and Fz given in [1] reduce, for the special case that will be
considered in the present paper, that Uj and U2 are constants, to

1. _ 1.
Fi=35 AnU; - AnUUs - Az + 3 Ay 1 (15)

1. . 2 . 1.
Fo=GA11+A12) Uy + Ap UhU2-5 A Ug_ (16)

where the dot over a symbol indicates differentiation with respect to ¢. In the
more general formulas for F; and F;, both the added masses and their

derivatives appear.

In any case, the added-mass derivatives play an important role. These,
obtained by differentiating (9), (10) and (11), are given by

A11 = 21thT Szn Azz = ZRpZT 821'\

(17)
A= 21thT Son-1 = 21tp2'.‘io SZn-l



and recurrence formulas for obtaining successive values of the &'s can be
derived by differentiating (3), (6), (7) and (8). This gives for circles

a2 28y b2 28n.2 -
= (dzz: ’ don-1-O2n-1), Son1=—3— dz::z don-2- 82n-2), 8o =0
d2n- 2n-2
dan=14Gadont, dana=1+(GePdma ol (9
2n = don-1 2n-1, d2n-1 = don-2 2n-2, =
Similarly we obtain for spheres
; a3 (3%n1 : b3 (3%m2 : ,
Oon = 3 (dznril - 521\-1) Mn-1= 3 (ﬁ -%n-2| 6=0 (18)
d2n-1 d2n-2

with the same equation as in (18) for the d's. The formulas for the §* and d”
are the same, except that a and b are interchanged.

3. Solutions for the locations and strengths of the doublets

We have, by (6),

b2 a2 a2 b?
do=¢ d1=c-? dy=c- & —C-—? d3=c-‘——a§—‘
€7 € c-p2/c

and in general, in the usual notation for a continued fraction,

Ra2bk b 2P B
dni=C- o ama 2=l " on (19)

where the subscripts on the c's serve only to count the number of fractions,

ileci=om=cg=..=c
2n-1 P2n
P -1 = - - - 20
ut dop-1=c¢ Qnt don=c g (20)

Since the p's and q's with odd and even indices are defined by different con-
tinued fractions in (19), these do not satisfy the usual recurrence relation for
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successive convergents of continued-fraction theory. An alternative, simple
recurrence formula is satisfied, however, and this will now be derived.

We have, by (19),

Pn1 b2 bcqon3-pon-3)
Q1 a2 " (*alqn3- cpana
.. Pan3
Q2n-3

Then we may put

P2n-1 =b2(cq2n-3 - p2n-3),  G2n-1 = (Za?)q2n-3 - CP2n-3

Then
1
G2n-3 =5 (Pane1 + b2pon-3)

and substituting this and the corresponding expression for qan-1 into the sec-
ond of the previous equations, we obtain the recurrence formula

P2n+1 = €2p2n1 - P4p2n3 (21)
where a2=c2-a2-b2, B?2=ab (22)

Similarly, eliminating pan-1 and p2n-3 from the same pair of equations, yields
the same recurrence formula for the q's,

q2n+1 = 02q2n-1 - B4qon-3 (23)

Since the coefficients a2 and B4 are symmetric in a and b, this recurrence for-
mula is also applicable to the p's and q's with even indices; i.e. we have

P2n = 02p2n-2 - B*p2n4, Q2n = 2qn-2 - B4q2n4 (24)
With the initial values
Po=0 qo=1 p2=caZ qy=c2-b2

p1= b2 qu=¢ p3= b%(c2-b?) qs = coi? (25)

11



the values of dn and dan+1 can be successively calculated from the recurrence
formula (24), although the formulas given in (6) are more convenient for this
purpose. By means of the former, however, exact closed-form expressions for
don and dppe1 can be derived.

It is shown, in the theory of recurring series, that a sequence such as
{p2n+1} which is linearly related, with constant coefficients, to the two previ-
ous members of the sequence, has a generating function given by

o0

+ (p3 - o2p1)x
PLYpS bl = 3 pPa+1 X"
n=0

1-a?x + B4x2

This is readily verified by multiplying the equation by 1-a2x + B4x2. Then, by
(25),

b2(1 + a2x) o
= n 26
1- ax + B4x2 néopz““ ) =

Similarly we obtain for the other three sequences

C o0
—_—= n 27
l_azx + B4x2 n§0q2n+l X ( )

ca2x o
=X n 28
1-a2x+p4x2 n§1p2“ X (28)
1+a2x ; n 29)

= X
1-a2x + p4x2 n=0q2n

The quadratic denominator may be written as
1- 02x + B4x2 = (1 - Ax)(1-A2x) (30)

where
1
M2=75(02 +01), ©1=A1-A2=(at-4pH)1/2 (31
Here A1, are real since

12



c2 > (a+b)2
and then c2-a2-b2=02>282.
Hence writing

= - =3 n = _
(I-A1)(1-A2x)  Aq1-A2 1-Ajx 1-7sz) o © Ons1X, On=2p -}y

and

X 1 zoo
(1-Ax)(1-42%)  ©

we obtain from (26, 27, 28, 29, 30)

b2 COn+1

Pan+1 = ~(One1 + 2200, Gone1 = = (32)

2 2

caZo, On+1 + 220
Pon=——"1 qp=—tt——0 (33)
o1 o1
Then, by (20),
co, (c2-b)0n+1 - BAon  On+2+a%0n4l
dop = _______rﬁ-_lE__ donst = n+1 B n_ n+2 n+ (34)
On+1 + aOn COn+1 COn+1

since ¢2 - b2 = @2 + a2 and by (31),

2 .
A =02hi-B4, i=12

This gives the locations of the successive doublets.

In order to find their strengths, we see from (4) and (5) that the prod-
ucts of the d's are required. From (34), we obtain

On+1 + a%0n
den2don1="_ 5
On + a On-1

Hence

13



On+1 + aZO‘n
01

dodids...don-1 =

Also, by (34),

On+aZon-1 COp COn
(dod1...d2n-3)d2n-2 = . 2 =
o1 On+a<On-1 o1

Hence (4) and (5) give

On = [Lpnc;jzl don-1=- [[32“0'1:'2 (35)
cn+l+a (o7 Ccl'\

The corresponding results for the case that U; = 0 and Uz = 1 can be ob-
tained from (34) and (35) by substituting d;n and d;n +1 for don and don+1, Szn

and an_l for d2n and 82n-1, and interchanging a and b, i.e.

* COn+1 * On+2 +b%0n+1
dy,=—7— = n=0,12,.. (36)
2n On+1+b20n d2n+1 COn+1
* bp<ng; |2 * nG1 2
82n 2{ o 6Zn-l =- {Bz 1:! (37)
On+1+b%0 COn

Results (34) and (36) for the locations of the successive doublets were first
derived by Herman [10] for a pair of spheres. With a slight modification of his
derivation, one can obtain the results (35) and (37) for the strengths of the
doublets for a pair of circular cylinders. Here only the derivation of the
Herman formulas is new. These are also presented by Guo and Chwang [2],
but without attribution or derivation.

4. Solutions for added-mass coefficients
The nondimensional added-mass coefficients are defined by

k1=A11/Mp, ka=A2n/My, ki2=A12/M3; M3 =npb2 (38)

14



Then, by (9), (10), (11), (35) and (37), the coefficients are given by

a2 2 e A2 I s U ..2]
k] = bz (1 + a2 El 821-\) = b2 [1 + 221 (on+1 + azcn) (39)
2 .t oo Y
ka=1+5E7 8y =1+25] (;—B%B—z‘—c—]z (40)
n+ n
2 o 2 _|pPfoyf2
k2= B2 21 dn-1 = ) Z [B;nl] (41)

In order to avoid very large numbers in computing ki, k2 and ki3, we define
the nondimensional quantities

n=0a2/p2 o =on/B" A =M/P2 A=2A2/P?

Then (39), (40), and (41) become, in terms of tn = 6,,/07,

k1 = %2 1+ 2b22;°(b1:n+1 + a*tn)'zl (39a)
ky = 1 + 22257 (aTny1 + btn) > (40a)
kip =- 2:2—2 sT T (41a)
and from (31),
of =MZ2H1/2 Af, = % [ +29'/? 42)

The forms in (42) suggest the substitution
N =2cosh { (43)

which yields

6;=25inhc A, =e*S op=2sinhn{ (44)

15



Since, hereafter, only the nondimensional forms of A1, A2 and o will be used,
the primes on these quantities will be omitted. Then, since

Tn =%1hl§§— (45)
by (44), the added-mass coefficients may be written in the third form
ki = %52 (1 +202 ZT [b sinh(n+sli)r£h-|2-ca sinh nC]z} (390)
kp=1+ 2a22;° [a sinh(nfiI)ICh j-cb sinh nC]2 (40D)
k2=~ %2 0 Z,Q=I7 ﬁﬁ% (41b)

It will be shown that the parametric forms, (39b, 40b, 41b), which appear
to be new except for Shail's result described below, play an important role in
summing the three infinite series and investigating their uniform
convergence, and enable the asymptotic behavior of the added masses and
their derivatives to be determined when the gap between the circles is very
small.

The same parameter { was introduced by Mitra [11] and Shail [12] in
their treatments of two-sphere problems by the method of successive approx-
imations using correction potentials. Mitra solved only the electrostatic
condenser problem. Shail applied Mitra's analytical method to the
hydrodynamic problem of two spheres moving along their line of centers, but
gave specific results only for the case of a sphere approaching or moving away
from a wall along its normal. His result for ky agrees with that in (75a) when
the wall is treated as a sphere of infinite radius.

We shall now show that, even when { is small, n need not be taken
very large in evaluating the infinite series (39b, 40b, 41b). To illustrate the
procedure to be used, let us apply it to evaluate numerically the series
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ZT 1/n2. We shall see that this series is related to the value of k12 at impact.

It is well known that
5= =1.644934... (46)

This may be written as

N1 w 17
21 ;2' + R*(N), R*(N) = EN+1 g

Interpreting the remainder R*(N) as the trapezoidal rule for the integral

o dn 1
R(N) = | 2= 1
1 N+§
N+E

we obtain the values for the error in truncating the series at N shown in
Table 1.

Thus the sums from 1 to N have errors of one in the first, second, and
third decimals for N = 10, 100 and 1000 respectively, but essentially agree to
four decimals at N = 10, and to at least six decimals at N = 100 and 1000 when
corrected by the "remainder” given by the trapezoidal integral. Since the
added-mass series converge faster than the series (46), as will be shown, this
suggests that adequate accuracy could be obtained with N = O(10), provided
the n-th terms of the three added-mass series could be integrated into a closed
form. That this is the case will now be shown.

Let us first consider ki, which, by (41b) may be written as

2a2 _N sinh2{ 2a2 « sinh2{
k22—, — -+ R12(N), Rpo(N) = d 47
12 2 “1 sinthC 12(N) 12(N) 2 Ilsinhznc n (47)
N+3
2

But

2a2 sinh2{ 1
= exp [-(N +3){] (48)
e sinh(N+1§)C P 2

2a2 oo
R12(N) =- z sinh2{ coth n{ 'N+%
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As { approaches zero, we obtain from (48) the limiting value

2a2 1 n2a2 a2
— = -5 =-3.289868 3 s= a+b (49)

The limiting value of [dk12(£)/d{]¢=0 can also be obtained from (48). Since
each term of the truncated series is an even function of {, its derivative is
zeroat{ =0. Also,as { — 0 for a fixed N,

22 2a2 1

2 —- sinh2{ [coth(N + 2) C-11="5( N+ 15' 0
Hence, indicating differentiation with respect to { hereafter by a prime, we
have
k (0) —2—32 (50)
and
k12(C)~-2§_ (1t2 9] (51)

Next consider ky({), written in the form

2a? sinh?2{

k =1 Z Ro(N, 52
2021+ [a sinh(n+1){ + b sinh n{]2 +R(NG (52)
where
Ry 2a2sinh2{dn ~ 2a sinh { sinh n{ ~
2= jl [a sinh(n+1){+b sinh n¢]2 ~ {[a sinh(n+1){ + b sinh nf] N*3
N+5
2

At the upper limit, we have

sinh(n+1)§ e+ ¢
sinh n{ oG
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Then

2asinh { 2a sinh { sinh(N+1§)§
27 {(ael+ b) " ¢[a sinh(N+ 9 + b sinh(N+ D]

2aZsinh2{-exp[-(N+ 1§)§]
- {(aeb+b)[a(cosh § + coth(N+1§)C sinh{) + b)

(53)

Here also only the term from the upper limit of the integral contributes to the
coefficient of { in the Taylor expansion of k2 about { = 0, since the other terms
are even functions. As { — 0, we obtain

2a 2a a
Ry(0) = sral =5 1-30 (54)
Then
, 2a2
k5(0) = - 2 (55)
We then have
232
k(D) = ka(0) - 3¢ (56)

where, by (52) with N = e and { — 0, we obtain the convergent series

o 2a2

k0 =1+Z, Gn+—a)2

(57)

Similarly, we find

2b2sinh2{ .
n+1){ + a sinh nC]2J

Q=250+ “a0-Z¢ 68
725 T b sinn( T2

where

a2 w 2b2
k1(0) = ] [1+Z, m] (59)
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The linear variation of k; and k,, with { is shown graphically in Fig. 2 for the
case a = b, for which (58) and (59) become

w 1 2
K1(0) = k(0) = 1 + 237 vy = - 1 = 1467401 (60)

The results for k1(0), k2(0) and k12(0), corresponding to ¢ = a+b, were given by
Guo and Chwang [2]. The expressions for k;(0), k;(0) and k{,(0), however, are

believed to be new. We see that the three added-mass coefficients have slopes

of the same magnitude at {=0. The remainder R1({), obtained from (53) by

interchanging a and b and multiplying by a2/b2, becomes
2a25inh2C-exp[-(N+1§)C]

B C(beC+a)[b(cosh§+coth(N+1§)C sinh{)+a]

R1(0) (61)

5. Asymptotic formulas for small gaps

The principal mathematical parameter in the foregoing equations is (,
which was defined in (43). The principal physical parameter is the gap g be-
tween the circles, given by ¢ = s+g. When g/b and a/b are given, then 1 and o1
= (n2-4)1/2 are also known, and § can be found by (43) or (44) by inverting
either the hyperbolic cosine or sine. When g is relatively small, however, the
relation between these parameters becomes very simple and useful. This
relation will now be derived.

We define the nondimensional quantities y and p by

2g12 B, 2

Y=
Then, we obtain

1
a2=(a+b+g)2-a2-b2 =202 +2sg + g2 =2B2(1 +§72+%u2y4)

and, by (43),
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1
cosh§=l+%yz+§uly4 (63)

Since cosh { = 1 + 2sinh? ({/2), then

3

C=2sinh'IZ=Z[Z-%Z3+EZS-'“], zZ<1 64)

where, by (63),

1
z=%(l+zu2ﬂ)1/2——(1+8uzyz 128w*+ ) W= —g<1

Substituting the series for Z into (64), we now obtain the asymptotic formula
(= y[l -5 (1- 3u2) 2 +gap B- 10u2 - 5u4) Y4] (65)

Of the two convergence conditions, Z < 1 and 2g/s < 1, the former is
more stringent. The latter restricts g to the mean of the radii, g = (a + b)/2.
The former can be expressed as

4 1/2
gs(“__a_ztz) / -1

] S

in which the right member has a maximum value of V2-1whena=b,andis
zero when the ratio of the radii, a/b, is zero or infinity. Even at the
maximum value, we have g/a < 2(\/5 - 1) = 0.828... versus 1.0 from the other
condition. Yet, as we shall see, (65) yields a useful approximation at g/a = 1.
Although the infinite series, of which (65) is a truncation, diverges, that series
belongs to the class of divergent series in which the error in using a partial
sum is less than the next term of the series. Thus the partial sum is useful if
the next term is very small.

According to (62) and (65), { is proportional to the square root of the gap
g when the gap is very small. For example, (58) gives

2 2
k() = kq(0) - 2 (325)” 2 (66)
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Then

dki_a® 25,172 | ce—0
dg ~s? 'p2g

in agreement with the known property that the slopes of the added-mass
coefficients versus g become infinite as the gap approaches zero. That the
. asymptotic slope varies inversely as the square root of the gap, however, is
believed to be a new result.

For small values of the gap, the asymptotic formula (65) yields highly
accurate values of {. For example, witha =b, we havep =1/2 and y= 2@
Then, at g/a = 0.25, (y = 1), (65) gives { = 0.989876 and sinh {/2 = 0.515394
versus the exact value from (64), 0.515388. The agreement is even better at
smaller gaps. Atg/a =1, (65) gives { = 1.92604 and sinh {/2 = 1.1189 versus the
exact value 1.1180. Thus the asymptotic formula for {(y) is sufficiently
accurate for values of g/a < 1.

Equations (62) through (65) are also valid for two spheres. The
asymptotic law for that case, given in (78), differs from that for the circles in
(66).

6. Derivatives of the added-mass coefficients

Recurrence formulas for calculating the derivatives of the added
masses were given in (18). Since the accuracy may be improved by applying
(39a), (40a) and (41a), expressions for the derivatives will now be derived on
the basis of these equations. Derivatives with respect to { will now be indi-
cated by the prime of a quantity; e.g., dt/d{ =1". Then, from (39a, 40a and 41a),
we obtain

ki =-4a2 37 (btas1 + atn)3 (br,}q + at)) (67)
kj = - 4a2 X7 (atn+1 + btp)3 (a1} + b1)) (68)

, 2 g 3 , ., ab
k12 = 4a Zl (C'tn) (C"tn+1 + C'tn), cC = —C_ Slnh C (69)
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in which ¢’ is obtained by differentiating a2 = 2B2 cosh {. Also, by (45), we
have

1, = csch § (n cosh n{ - 1, cosh §) (70)
with which the ks can be computed.

The trapezoidal-integral procedure for evaluating the remainder of a
truncated infinite series may also be applied to the series of derivatives of the
added-mass coefficients. To apply the method, it was necessary that the n-th
term of the series be integrable in closed form with respect to n, as was shown
to be the case for the parametric forms of the coefficients. Hence the n-th
term of the series of their derivatives must also be so integrable since the
order of performing differentiation with respect to { and integration with
respect to n may be reversed; i.e., the integral of the derivative is given by the
derivative of the integral that has already been obtained for the parametric
form of the added-mass coefficients.

The method will now be demonstrated by evaluating Z;({). We obtain
by (49)

g2 gN d (sinh?{ \ d sinh?( coth ng |
2" g (sinhanJ dg ¢ N+5
. N2 inh?
= 211\I - (coth{ - n coth n{) - 5122 g .
Tn

. {(2 Ccoth §-1)[1-coth (N + %)C] + (N + %) ¢ csch2(N + %)C}

7. _Convergence of the series for the added masses and their derivatives

In summing the series for the added-mass coefficients, it was observed
that the terms of the series were even functions of {, so that the derivative of
each term with respect to { is zero at { = 0. Thus, if the series of derivatives
were uniformly convergent, its sum would also be zero at { = 0, contrary to
the results given in (51), (55) and (58). It is important, then to investigate the
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convergence of the series for the added-mass coefficients in (39a), (40a) and for
their derivatives in (67), (68) and (69).

This topic was treated by Guo and Chwang [2], but their treatment was
flawed by several errors. One is that they refer to proving the uniform con-
vergence of the sequence of the terms of a series {an}, instead of the sequence

of partial sums [Z’; ar}. A second is that the simple ratio test ans+1/an <1 was

used to "prove" uniform convergence, although that criterion is only a
necessary condition for convergence; for example, it is satisfied by the diver-

gent series £7 (1/n). Thirdly, no attempt was made to prove uniform

convergence of the original series in the closed region 0 < g < o. Its conver-
gence at g = 0, and uniform convergence in the open region 0 < g < «=, does
not assure uniform convergence in 0 < g < e since the series may be discon-
tinuous at g = 0. Lastly, although they are aware of the need to prove uniform
convergence of the series of derivatives, the reason for undertaking to prove
that the original series is uniformly convergent is not mentioned. Hence a
reconsideration of this subject appears to be necessary.

First consider the series for kj2 in (41b). Since sinh n{ > nsinh {, 0 < {

-2
< oo, (as is seen from their Taylor expansions), then by (45), tn > nand ¥, <1/n?

for 0 < { < =. Since also ¢ > s, then

27 (ct)2< ZT (stp)2<s2 ZT 1/n2

Application of the Weierstrass comparison test with the series ZT 1/n2 then

shows that the series for ki3 is uniformly convergent in 0 < { < oo.
Next consider the series for k; in (40a). We have
(aTn+1 + btp)2 < (btp)2 < (bn)-2

Hence, by the same comparison test, the series for kj is uniformly convergent
in 0 < § < e. Similarly, by interchanging a and b, we can show that the series
for k1 has the same property.
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Since the terms of the three series are continuous functions, and the
series are uniformly convergent in 0 < { < =, we conclude that the added-
mass coefficients, as given by their series, are continuous functions. This was
not obvious since the terms of the series involve sinh n{ which is zero when
€ = 0, no matter how large n may be, but becomes infinite as n approaches in-
finity no matter how small { may be.

To investigate the convergence of the series for kj, we consider its form

given in (40b). For n very large, we have

sinh { ~ 2en&sinh {
asinh (n+1){ + bsinhnf  aeb+b

Then

d enlsinh{ 2ne-2n{ sinh2(
—_ ———-—-————)2 = -
d¢ = aeb+b (ae + b)2

71)

Put p = 25, and let N be a large value of n at which (71) is valid. Then {71).is

seen to be proportional to the derivative of the power series Z;} p™ which,

together with all its derivatives, is uniformly convergent within its 'circle of
convergence', i.e., 0 < { <o, or p < 1. A similar proof verifies that the series
for ki in (39b) is uniformly convergent in the same open range.

For ki3 in (41a), the n-th term of the series is

2 2
2 r2¢
d o1 O'lcn CGl 20'10'-1
an=-_— ()= + -
"TUdL con | 262 2 2.2
2o, o, 2o,

oo 2
where ¢’ is given in (69). Since on = 1n0; and the series z (1/7,) has already

been shown to converge uniformly in the closed region, we see that the series
of the second and third terms also converge uniformly in that region. The
first term, however, becomes asymptotically
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2 2
20yn cosh n{ 4o,
-ng
2 ne

c2 sinh? n{ =

proportional to that in (71), for which uniform convergence in the open re-
gion has already been proved. Hence the series for k/, is also uniformly

convergent in the open region 0 < { < os.

If the derivative series were uniformly convergent in the closed region,
then ki (0) (say) would have been zero since all the terms of the series are
even functions; but this would contradict the results in (58). Hence there is a
discontinuity in slope as { passes through zero from positive to (physically
meaningless) negative values, with k1({) = k1(-{) and a sharp peak at { = 0.

8. Results for spheres

Basic iteration formulas for the locations and strengths of successive
doublets for a pair of spheres were given in egs. (3') to (11'). These show that
the only changes in the expressions for the doublet strengths from those for a
pair of circles are a factor of 1/2 and changes from squares to cubes, correlated

with the changes from 8§, = a2 to a3/2 and 8; =b2 to b3/2. The formulas for the

positions of the doublets remain the same. Thus we obtain

1 abo; 3 1 ab sinh{ 3
on=s[—"""-"71 =5 72
2 [bcn+1+aon] 2 [b sinh(n+1){+a sinh n{ (72)
1 aboy3 1 _absinh{ 3 »
1=-= =[] = 73
82!\ 1 2 [ ] 2 c sinh nC] 6211—1 (73)

The expressions for 8;n and 8;n_1can be obtained from (72) and (73) by
interchanging a and b.

The added-mass coefficients can now be obtained by substitution into
4
[97], [107] and {117] and dividing by M3 =3 npb3. This gives
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a3 00 b Sinh C 3
- 1 74
k1 2b3 (1+3% [b sinh(n+1){ + a sinh nCJ } 74

a sinh { 3

1 o
k= 2 1+3%, [a sinh(n+1){ + b sinh n{ 7
3a3 ~ sinh3
ki2=53 %0 23=%1_ 3 nCC 76

The general terms of the series (74, 75, 76) can also be integrated into
closed-form expressions, so that the technique of applying the integral to
evaluate the remainder after the N-th term may be used to obtain high
accuracy with a moderate value of N. For (76), the integral to be evaluated is
of the form

| sinhrxdx

for which a reduction formula for positive or negative integral values of r is
given in tables of integrals. In the present case, r = - 3, and the reduction for-
mula reduces it to the known integral for r = - 1. The denominators of the
terms of (74) and (75) can be expressed in the same form by writing that in
(75), for example, in the form

a sinh (n+1) { + b sinh n{ = (A sinh n{ + B cosh n{) = VA2-B2 sinh (n{+u)
A=acosh{+b, B=asinh{, cothu=A/B.

The actual integrals will be presented here only for (76) since we are mainly
interested in the numerical results for pairs of cylinders in the present paper.

As in (49), we write

3a3 N sinh3( > sinh3(
k12 = +R , Rpo(N) = —=d
12=53[% Sinh3nl 120N, R12(N) jl Sinhant n
N+3

and we find
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C[csch(N+2)l;coth(N+2)§+ln tanhgl-\I-—l-C] (77)

sinh

R12(N) + o

As in the derivation of (51), the limiting value of (dk12/d{)¢=0 can be obtained

from (76) and (77). Again we see that all the terms of the truncated series and

the first term of R12(N) are even functions of {, so that only the In-term can

contribute to the derivative at {=0. Then, for small values of {, as { ap-
proaches zero for a fixed N, we obtain

3a3
k12(0) = k12(0) - 75 £2 Ing (78)
3a3 3a3
k12~'2535111§~-2$371n7 (78a)

since {=y according to (65). This shows that k1’2 approaches zero as (

approaches zero. The derivative with respect to ¢, however, is infinite since,
by (69),

d 1

— =2

(ZCZInC)/C zlnC—-) was{ — 0. (79)

T dg B

Similarly it can be shown that the derivatives of k1 and ky with respect to {
are zero, and with respect to c are infinite. Again, this implies that the
spheres would never meet.

The series for the added-mass coefficients, given in (74), (75) and (76),
converge for all values of {, 0 < { < . At { = 0, we obtain

a3 oo b3 .
k1(0) = 2b3 (1+32%; [na + (n+1)b]3’ (80)
1 oo a3 .
k2 =5 1+ 35 T iyarmP (81)
383 . 1 3
Ki2(0) = - 53 E7 —3=- 1.2020569... g—g— (82)
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When a = b, we get

k1(0) = k2(0) = % 1+ 32'.‘; (2n1—1)3] = 0.5776997... (83)

The results in (80) to (83) were given by Hicks [13].

The proofs of uniform convergence of the series for k1({), k2({) and
k12(8) in the closed region 0 < { < = for the two spheres are similar to those
for the two circles, with the convergent series in (82) serving for the compari-
son test. The proofs of the uniform convergence of the series for dk;/d¢,
dk>/d{ and dki2/d{ in the open region 0 < { < = are also similar, with p de-
fined as p = e3¢, the proof then depending on the uniform convergence of a
power series in p, and its derivatives within its 'circle of convergence.'

Part II: luti n In 1 ion

1. Derivation of integral equations

The developments described in Part 1 were undertaken to evaluate the
accuracy of the integral-equation procedures described in References [1], (2], [3],
and [6], and used to obtain added masses for body pairs of various shapes.
Among these procedures, the two that most affected numerical accuracy are
the treatment of the sharp peaks of the integrands of the integral equations
when the gap between the bodies is very small, and, secondly, the procedure
for computing the derivatives of the added masses.

The unknown functions in these integral equations are taken to be the
source distributions 61 and o2 on the surfaces of bodies, moving with veloci-
ties U1 and Uz along the line joining their centroids. When Uy =1 and Uz =
0, the solutions 6; and o, of the pair of integral equations, derived from the
associated boundary conditions, give the added masses by applying the gener-
alized Taylor formulas [4], [5] or [6]. The x-axis is taken along the line joining
the centroids and the bodies are assumed to have an x-z plane of symmetry so
that they can move without rotation along the x-axis; see Fig. 3.
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For the two-dimensional case, the velocity potential ¢(P) at a point P ex-
terior to both bodies or on their bounding contours, is given by

o(P) = ﬁcl 01(Q1) In rpQq dsq + ﬁcz 62(Q2) In rpq2 dsqe (84)

in which Q; and Q, denote points on the closed contours c¢; and c¢; of bodies 1
and 2 respectively, rpQ1 and rpQ are distances to P from Qq and Q», and dsQ1
and dsQ are elements of arc along c; and ¢;. The boundary conditions to be
satisfied are

o0 B ox o0 ox

=U =Up— 85
onp1 1 onp1 oJnpz 2 onp> (85)

where np1 and np2 denote distances along the outward normal to c1 and ¢,
and the point P lies on the boundary of body 1 or 2. These give the pair of in-
tegral equations

d
no1(P) + 9., 01(Qp) a—n;ln rp1o1 dsQr +

ox

9, o2AQ) 3 — ln 1P1Qy ds2 = Un 3y (86)
no2(P2) + $ . 02(Q2) 9 In rpaQ2 dsqQ2 +
€2 onp2
0 0x
f’q 01(Q1) FPZ In rpyQq dsQ1 = U2 - (87)

Here the additional terms nc1(P1) and no2(P2) appear in differentiating the in-
tegrals in (84) which are singular when Qi passes through Pq, or Q; passes
through P>. In (86) and (87), however, the kernels

8 9
K(Plel) (ln l'p-[Q]) K(leQz) on —(n rpzoz) (88)
Npy

become indeterminate and, at smooth points of the contours, have the limit-
ing values
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1 1
K1(P1,P1) =5 C1(P1), Ka(P2,P2) =5 Ca(P2) (89)

where C; and C5 are the curvatures of contours c¢1 and c3; see ref. [15].

When c; and/or ¢ are not defined analytically, there would be a loss of
accuracy in determining C1 and C;. This can be avoided by taking advantage
of the well known property of the integral of the transpose of the kernel,

6ci Ki(QiP) dsi==x, i=1,2 (90)

Then (86) and (87) may be written as

0
2n01(Py) + [Gl(Ql) T Inmyg - 01(1’1) In rp1q1l dsgy
Q

on Npq
ox

+ ﬁ Gz(Qz) ln rP-le dSQ2 = Ul anpl (91)

) 0
2m02(P2) + 9, [02(Q) - — np In rpaqe - 02(P) 5~ 1N rpagy] sy
P2 InQ2

0x

(92)
anpz

0
+9. 51(Q1 len Ipoo1 dsg1 = Uy

We see from (91) and (92) that the integrands with the indeterminacies van-
ish when P and Q coincide.

The integral equations for the three-dimensional case are derived in a
similar manner. The potential at a point P exterior to the bodies or on their
bounding surfaces is

o(P) = - Js; 01(Q1) =7 dSq1 - I, 52(Q) dSq2 (93)

rPQl rPQ2

where S1 and S denote the surfaces of bodies 1 and 2, and dSQ1 and dSq2
their area elements. The boundary conditions are the same as in (85), and ap-
plying these, we obtain the pair of integral equations

31



3 2 3
2n01(Py) - oSS jcz(Qz)—‘ dSQz—Ur-—’f— (94)

IP1Q1 P1Q2 onp1
2m02(PY) - [ 0AQ) ————d ( )——— dSo1 = Uy =~ (95)
no2P2 J’Gz P ,P2Q2 SQ2- j01 Q1 > tp2qn o =23
In this case, the kernels

KiPyQ) = -5 —— =12 96)

i(Py,Qj nPi rPlQl 1=1,

remain singular, and it is more important than in the two-dimensional case
to remove the singularity. This can be accomplished by applying the property
of the transpose of the kernel at a smooth point,

Js, Ki (Qi, P) dSqi =2r, i=12 (97)

to write (94) and (95) in the form

1 )
4no1(Py) - IS] [(51(Q1)—rPl o o1(P1) —Q I'P101] dSq1
- )— d Up = (98)
s, 92(Q2 TP Se=Ui—— ot

d 1 d 1
4nox(P2) - [, [02(Q2) 3y 10202~ 922 anga 72 o 452

ox
anp2

1
-Is, Q) —_TPZQI dSq1 = Uz (99)

It was shown by Landweber and Macagno [16] that the singularity of the ker-
nel is removed by the foregoing procedure.

After the integral equations have been solved for the source strengths

1, where c;; denotes the source distribution on the j-th body due to the
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motion of the i-th, then, for the 2-D case, the added masses can be obtained
from the generalized Taylor formulas. For the 2-D case, we obtain

Aqq = 2mpd X Oy1ds; - pA;, Ay = 2nphe, X0p5ds; - PA;
where A, and A, are the areas bounded by ¢, and ¢,, and
A=Ay = anﬁcz X01,ds, = anbcl X0y;ds,
and for the 3-D case,
A= 41tp¢>31 x0p1dsy - pVy, Ap = 41tp§>52 XGoods, - pVsp
where V1 and V2 are the volumes of the interiors of S; and S,, and

2. Elimination of peaks of integrands

When the gap between the bodies is small, then, at points P1Q2 and
P2Q1 in the neighborhood of the gap, rpq will also be small and the integrand
will have a sharp peak. There are two ways to evaluate such an integral accu-
rately. One is to eliminate or reduce the magnitude of the peak, the other is
to use a quadrature formula which concentrates enough points in the neigh-
borhood of the peak to yield the desired accuracy. A combination of these two
procedures was used in [2] for the case of a pair of circles, and the resulting
values of the added masses agreed very well with those from the method of
images; but the procedure for modulating the peak depended upon the exact
integral of the kernel for a circle, which is not available with other shapes and
removed only the peak associated with the points P at 61 =0 or 62 == for a
pair of circles.

A procedure suitable for arbitrary shapes is based on the property of the
transpose of the 2-D kernel K(P1,Q2),

4’C2 K(Qo,P1) dsqp =9 InrpiQ2dsg2=0 (100)

€2 9nq
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since the integral may be interpreted as the flux through a closed curve c; due
to a unit point source at the exterior point P;. Similarly we have

Jo; K@Q1,P2) dsq1 =0 ' (101)
and for the 3-D kernels

s, K@Q1,P2) dSqn =g, K(Qz2,P1) dSqz2 = 0 (102)

Thus, for the integral over c; in (87) and (92), we may write

d 0
ﬁ’cl 61(Qy) - In rp2qQ1 dsQi = f’cl [61(Qn) P In rp2Q1 -

.
P 1
o1(P 1) 3ng1 In rp201lds1 (103)

where Pi is the point on c1 closest to P, which is such the line Pi P, lies along

the outward unit vector ﬁPl" normal to ¢ at P L see Fig. 4. Then, when Q;
coincides with Pi, the last integrand becomes

ol(Pi)( 0 9 c1(P]) A A A |
rpapy’ anpz-anplp) Ip2pr’ = - npy-* (np2 + npy

c,(Py) A A 6P
= (1+npyr Npy)=—"(1+cosv)
Ipopy P1" P2 1popy- v

where fip is the outward unit normal vector at P> on ¢ and vy is the angle
between the normals. In the range in which rpap1- is very small, n - y is also
small, and hence 1 + cos y appears to be small of second order, with rpapy’
considered as small of first order. Hence the introduction of the transpose in
(103) reduces the magnitude of the peak to first order of smallness. Similarly,
the second integrals of (86), (95) and (94) may be written as

d J
—1 = - -
¢C202(® . nrp1Q2 dsqQ2 @CQ [02(Q2) anpt Inrp1Q2
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02(P2) ln rpiQzl dsQ2 (104)

1 1
I 01(Q1)—rP2Q1 dSq1 = IS [<51(Q1)"—“erQl
d
P o I'P2Q1] dSqr (105)
Js cz(Qz)————,Pl o =I5, [Gz(Qz)——erz
cz(Pz) 1dSq2 (106)

rPIQZ

in which P, is the point on ¢ closest to P1.

3. The MAQF with nonuniform intervals

The second phase of treating the peak of the integrand was to select a
quadrature formula which concentrates points in its neighborhood. For this
purpose, a transformation was introduced which permitted the MAQF to be
applied with nonuniform integrals, such that the desired concentration of
points about the peaks was obtained. This will now be presented.

Let F(6) be a periodic function, with period 2rx, which has a sharp peak
for small values of 6. We wish to evaluate the integral

= 12" Fo) de

If the MAQF were applied directly, a very large number of abscissas would be
needed to obtain enough points over the range of the peak, since uniform in-
tervals are required. To resolve this dilemma, we define a variable w by

O0=w-sinw, 0<w<2n (107)
()
Then de =(1-cosw) do= 2s1n2§dm

Hence
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1=2J;" G(o) sin? 5 do, G(w) =F®) (108)

Clearly, the new integrand is also cyclic. Hence we may apply the MAQF (the
trapezoidal rule) by using uniform intervals Aw. This concentrates many in-

1
tervals near 6 = 0 and 2n where A9 = icozAm, and fewer near 6 = w = &, where
AD = 2A, as was desired. Here we assumed that 8 = 0 and 2r at the points of
minimum distance on both bodies. For the two-circle case, where the points
of minimum distance are at 8; =0 and 6, = &, we define 6; = - 6, with which

the above formulas may be directly applied.

For small values of ®, (107) gives 8 ~ w3/6. This suggests that the
concentration of points near 8 = 0 and 2n could be increased by removing the
w3-term. This can be accomplished simply by modifying the 6(w) function in
(107) by subtracting w3/6, but that would violate the MAQF condition that the
integrand be cyclic. Instead, we define 8(w) as

1
0=w-sinw-g sin3w (107a)

sin2w cos ®)dw

N|—=

Then de = (2 sin?

N|E

[0
=2 sin E(2+cosm)dco

and hence

2n
I=2 0[ G(w)(2 + cos o) sint -(29 do (108a)

which also has a cyclic integrand. At small values of ®, we now have Af=
3
gm“Am, so that the concentration of 68-intervals near 6 = 0 is greatly increased

when Aw is constant. At 6 = = &, both (107) and (107a) give d6 = 2dw. The
asymptotic form of (107a) is 8=3w°/40, which can also be eliminated by
subtracting (3/40) sin’w. This yields the third transformation
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1 3

0=0-sinw-g sindw - 20 sin® (107b)
2r
®
and I= O[G(m)(B +9 cos o + 3 cos2w) sin® 5 do (108b)

The procedures for obtaining a succession of nonuniform intervals, with
which the MAQF can be applied, is now evident.

Since 8 = 0 when ® = 0 and 6 = t when ® =&, and the w-intervals are
uniform, an indication of the point concentration is given by the value 6 = 8,

when ® = /2, i.e. at half the number of points between 0 and n. Substitution
of w = /2 in (107) and (107a) gives 6, = 33°, 23°, and 19° respectively. Also, at
these values of w and 6, we have d8 = do, indicating that the increments A6
change from concentration to dispersion at 6 = 6.

With any member of this family of modified MAQF transformations,
the integrand vanishes at 8 = 0 and 2=, thus eliminating the peak of the
original integrand F(8) at that point. This property also reduces the
amplitude of the peaks occurring at small, nonzero values of 6, but, as will be
seen, not sufficiently so that the transpose correction for eliminating peaks of
the kernel would become unnecessary.

When o is small, significant figures may be lost in computing 6 directly
from (107, 107a, 107b). For (107), this can be avoided by writing

0)3 (.05 (.07 (03 0)2 (1)4 0)6
31751 71 =% (1-20 * 840~ 60,480 * €@

0=

where {e(w) | is less than the next term of the series,
lel <w11/111 < 1.6 x 107 w!!

and w3/6 is computed in scientific notation. For (107a) and (107b), we apply
PN s 1 . .
sin"w = 7 (3sinw - sin3w),  sinw =77 (10 sinw - 5 sin3w + sin5w)

and the Taylor series of sines of ®, 3w and 5w to obtain, respectively,
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3w° = w24
0= E[l -15Z5 (D" GarDl (32"'2-1)] (107¢)
507 105 < n-6 ] i
9=m[1 - 5z (-1)"m(2-32" 1+ 520-2 (107d)

4. Evaluation of derivatives of added mass

Both added masses and their derivatives with respect to the gap g be-
tween the cylinders occur in the expressions for the forces on the bodies. In
Ref. [1], these derivatives were obtained by numerical differentiation of the
smoothed added-mass data, with unsatisfactory results at small gaps, because
the derivatives were approaching infinity and small errors in the data were
amplified.

The accuracy of the results from numerical differentiation of the
added-mass coefficients has been greatly improved by a simple and important
change. Since the error depends on the magnitude of the second derivative,
this suggests that the asymptotic law of the added-mass be applied to reduce
the error. For example, according to (66), kq(g) varies linearly with /g (or the
parameter { or y of (62)) at small values of g, as is shown in Fig. 2. Then
dk,/dy can be obtained by numerical differentiation with greatly reduced

error, with which, by (62), we get

(109)

dia _diady 1025 \12dk
( ) dy

without further loss of accuracy.

The parameter v is also useful for improving the accuracy of the added-
mass derivatives for spheres. This is not indicated directly by the asymptotic
formula (78), since the rate of variation of the added masses at very small
values of { or y is much greater than at its moderately small values
corresponding to the practical range for g/a = 0.01 (for equal spheres) due to
the factor In v. Since dk,/dy varies slowly in that range, it could be evaluated
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with sufficient accuracy from the computed values of the added masses.
Their derivatives with respect to g were then obtained from (109).

To obtain the numerical results for the derivatives (other than the
‘exact' ones) shown in the following tables, Lagrange's five-point
interpolation formula was used, without smoothing the calculated values of
the added-mass coefficients.

5. Numerical results for pairs of circles

a) Exact results

All the numerical results were obtained on an IBM RISC/6000
minicomputer. First, an accurate set of added masses for a pair of equal circles
was obtained by summing infinite series of doublet strengths. These were
calculated by means of the basic recurrence formulas, such as (3) and (6), and
by the various forms of the Herman formulas. Of these, the parametric forms
in (39b, 40b, 41b) were found to be most efficient and their efficiency was
greatly enhanced by applying the truncation corrections given in (49, 53, 61) in
summing the series for the added-mass coefficients. This is demonstrated in
Table 2 by calculations of kj2 for equal circles, where Ry3 is given by the
trapezoidal integral (49). This table supplements Table 1 which corresponds
to the zero gap. We see that the approximate ratios of the number of terms N
which give the same accuracy without and with the truncation correction are
10 at g/a = 0.0001, 4 at 0.001, and 2.5 at 0.01. This shows that the truncation
correction is very effective at very small gaps, and that its effectiveness
diminishes with increasing gaps. By (62), the parameter { is related to these
gaps by { = 2\[5/_; = 0.02, .0632, 0.20, respectively. Thus ( is not very small at
g/a = 0.01, and the series for ki at larger gap’s (say g/a > 0.10) converge fast
enough so that little is gained by applying the truncation correction.

It was found that, for g/a > 0.01, the added-mass coefficients obtained
from the recurrence and the various forms of the Herman formulas were
identical to the sixth decimal place. This would not be the case at much
smaller gaps, corresponding to very small values of {, when N is very large,
because of accumulation of round-off errors in using the recurrence formulas.
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For applications requiring accurate calculations at very small gaps, we observe
that

sinh n{
Tn ="
sinh{

= 2[cosh (n-1){ + cosh (n-3){ + ... + cosh {], n even

Tn = 2[cosh (n-1){ + cosh (n-3){ + ... + cosh 2{] + 1, n odd (110)

which can be readily derived by expressing the hyperbolic functions in their
exponential forms. This would be useful when { is so small that 1, could not
be calculated accurately from its definition, even with double precision.

Values of ki, k12 for g/a > 0.01, designated as 'exact’, will be given in
Table 4. 'Exact' values of kj and ky are not listed separately in the table
because these were identical to the calculated values to the six decimals
shown. The columns for kj and kj; are actually bk and bkip, but it is
convenient to take b=1 hereafter. The 'exact' added-mass derivatives given in
this table were also computed both by the recurrence formulas (18) and by the
derivatives of the Herman formulas given in (67, 68, 69). These agreed to the
six decimals shown in Table 4.

It is also of interest to show the variation of k1 and ky2 with {. This is
depicted in Fig. 3 in which the asymptotic linearity with § or vy, according to
(52, 58, 66), is clearly shown.

b) Computed resulfs

For the case of two circles of radii a and b, the kernels of (88) are
constant and, according to (89), the constants are given by

S 1
K(PllQ]) = -ZE K(PZIQZ) = 2_]5

The first integrals in (86) and (87) are then proportional to the total source
strength on each circle, which is zero by the Gauss flux theorem. The kernel
of the second integral of (86) is given by

p) 1 arPlQZ
K(P1,Q) = P An TPz =1 onp1
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Here
Q2 = [a2 + b2 + c2 + 2bc cos 82 - 2ca cos Bpj - 2ab cos (9Q2-9p1)]1/ 2

and drp1Q2/9np1, the cosine of the angle between the vector from Q2 to P1 and
N1, can be obtained by differentiating rpiQ2 with respect to a. This gives

1
K(P1,Q) = [a - ¢ cos Bp; - b cos (82 - Op1)] (111)
';p1Q2

Similarly, we obtain

0 1
K(P2,Q1) =—— 4nrpaQ1 =5 [b + c cos Bp2 - a cos (8p2 - BQV)] (112)
onp; I'p2Q1

and for their transposes,

1
K(Q,Py) = AnrpiQ2 = [b + c cos 8Q2 - a cos (Bp1 - 6Q2)] (113)
onQ2 ';1Q2
1
K(Q1,P7) = 3no1 AnrpQ1 =7 [a - ccos Bp2-bcos (81 -0p2)] (114)

I'p2Q1

The integral equations (86) and (87), with the transposes of the kernels
applied to eliminate the peaks as shown in (103) and (104), now become

’ d
no1(P) + | [62(Q2) K(P1,Q2) - o(P.) K(Qz, PPl bdey = Uy ——  (115)
e 2 onpi

ox

no2(P2) + | [01(Q1) K(P2,Qy) - O'(P;) K(Q1,P2)] ad61 = Uy (116)

1 onp2

Here the point P ; is such that rpop1' is the minimum distance from the point

’

P2 on one body to the other; see Fig. 4. For this case, P ; is the point of

intersection of the line from P; to the center of the other circle, and one can
readily show that 6p1” and 6py” are given by

41



bsin § asin 0
tan Bpy’ = ————2>—  tan Gpy = ————0— (117)
¢ + b cos Op2 C- a cos 9p1
The integrals were discretized by applying the modified MAQF of (107)
and (108) to obtain a set of 2N linear equations for the ¢'s. For integration
over circle A, in which the peak occur near = instead of zero, 07 in (107) must

be replaced by its supplement 9'2 ie., 6; =n-02=w-sin . Then 9'2 and o vary

from 0 to 2% as 0, varies from =« to -t. The discretized forms of (115) and
(116) then become, in the form of an iteration formula,

(n+1) dx 4nmb (n) (n) ) .
moy;  =Ul g N ;=21 N [0, Kiigj - O, Kaji] sin2 0—;1
(n+1) ox 4nb (n) (n) O
moy;  =U2 g N jEIN [0} Kaitj- 0,y Kijail sin? 5 118)

where the superscripts (n) and (n+1) indicate the nth and the (n+1)th

iterations. The values 61;" and 63;’, corresponding to O'(Pl) and O'(Pz), were

obtained by linear interpolation between the values of ¢ at the extremities of

the w-interval in which P1 or P, lies. The initial approximations to start the

iteration were taken to be

o 1 ox. o 1 ox
. =—U — . ="‘"U
°li T 1 onij %2i = -2 ony;

(119)

Graphs of the source strengths ¢1(81) and 02(9'2) and of the original

integrand 02(82) K(P1,Q2) of (115) are given in Figs. 5 and 6 for the case Uy =1,
Uz =0, and a = b. Results for three gaps, g/b = 0.01, 0.05, 0.10 in Fig. 5 show
that both o1 and 67 peak sharply at 6; = 6'2 = 0, with peak maxima of 61(0) = 1.7
and 03(0) = 1.5 at g/b = 0.01 and the smaller values ¢1(0) = 0.80, 02(0) = 0.64 at

g/b = 0.05, and 01(0) = 0.60, 62(0) = 0.44 at 0.10, although the peaks of 67 are
consistently sharper than those of 61. As the gap approaches infinity, the
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1 ’
source distributions become 61 = ; cos 6,01(0)=1/rand 62 =0. AtOg = 92 =T,

the limiting source strengths are 61(rn) = - 1/% and o2(x) = 0, and the values at
the small gaps are negative but deviate little from the limiting values at g = oo.

Figures 6a, 6b, 6¢c show curves for g/b = 0.01 corresponding to three
fixed points 8p1 which give 8'p2" = 0, 6.5, 11.9 degrees. We see that the peaks of
the original integrands are an order of magnitude higher than those of the
source strengths at this gap. For example, the maximum value of the kernel

K(P1,Q>) at 81 = 0 occurs at 9; = 0 and has the value 1/g = 100 versus the peak

02(0) = 1.5, in good agreement with the calculated peak value, 62(0) K(p1,Q2) =
151.6. At 8’pp = 6.5 and 11.9 degrees, the peak values of the original integrand
are 27.1 and 4.0, much less than the magnitude of the central peak.

With the transpose correction and the associated source strength

02(6'21,,), the peaks were essentially eliminated. When o2(n) was used instead

of 0'2(6'213,), as is done in Ref. [2] for all points P1, the peaks. were overcorrected

and the peaks of greater magnitude but of opposite sign shown in Figs. 6b and
6c were obtained. This is a direct consequence of the sharp peak of the o2-
curve in Fig. 5a, which shows that 02(0) is more than twice the values of o3 at

9'21,, = 6.5 and 11.9 degrees. This shows that, although the kernel peaks are

much larger than those of the source distributions, the latter play an
important role in the elimination of the peaks of the integrand.

In Fig. 7, the ordinate scales of Fig. 6 are magnified to show the fine
structure of the nearly flat curves of the integrand when its peaks have been

removed. The initial dip of the curve for 9’21,, = 0 is due to a combination of

the small value of the gap, g/b = 0.01, and the associated very sharp peak of
0'2(9;); this was verified analytically by applying the expressions for the kernel

’

in (111) and its transpose in (113). For the other two values of 0,5,

many
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more points would have been needed to show smooth curves of their
oscillations; but since these curves were not used quantitatively, and the
purpose of the figure was to show the need to concentrate many points of a
quadrature formula in the gap region to take this fine structure into account,
the present figure sufficed. This was accomplished by using the modified
MAQF (107) to concentrate points in the regions of the peaks and increasing
the number of points as the gap decreases. In Ref. [2], three Gauss quadrature
formulas of order 20, two of which extended over the peak region, were used
for the same purpose.

The foregoing hypotheses were tested by running the numerical
experiments of Table 3. Condition 1 gave 'exact' values; comparison of
conditions 1 and 4 confirms the importance of removing integrand peaks,
although the accuracy of 4 improved greatly at N = 100. Condition 2
simulates the above-described technique of Ref. [2], in which 61(0) and 62(0)
are used instead of 61(01p") and 62(82p"). The accuracy improved greatly by
increasing N from 40 to 100 and the latter result agrees very well with that of
Ref. [2] given in Table 5. Condition 5 is the procedure used in Ref. [1], which
required N = 600 to obtain acceptable accuracy. Thus it appears to be most
efficient and accurate to remove all the peaks of the integrand and to use
some means of concentrating points in the peak regions.

The present results are compared with the 'exact’ ones in Table 4 and
with those of Ref. [2] in Table 5. The latter shows that the values of k1 and kj»
given by the present methods agree with the exact values to six decimals. In
Ref. [2], the results were correct to only two decimals at gaps of 0.01 and 0.02,
three decimals at 0.03 and 0.04, and to at least four decimals at 0.05 and
beyond. The greater accuracy with the present methods is evident.

The need for high accuracy becomes apparent when the data are used to
obtain the derivatives of the added masses by numerical differentiation,
which depend upon differences between successive values. From Table 5, we
see that the differences between values at gaps of 0.01 and 0.02 for ki, 0.0313
from Ref. [2], versus the exact value of 0.0337, is in error by 7 percent. Clearly,
then, numerical differentiation could not be used in Ref. [2]. Instead, the
derivatives of the original integral equations were solved for the derivatives
of the source strengths, which then yielded the derivatives of the added-
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masses directly. This procedure gave the values shown in Table 6, which
have an error of 2.5 percent at g/a = 0.01, but are very accurate of gaps of 0.02
and beyond. Since the peaks of the integrands of the differentiated integral
equations were much higher, the order of the two Gauss quadrature formulas
in the symmetrical peak regions was increased from 20 to 40. The values of kj
and ki, obtained with the four Gauss quadrature formulas, each of order 40,
are not listed in Ref. [2]. The present method gives more accurate results at
g/b = 0.01 and 0.02, but at 0.03 and beyond, both are highly accurate. The
present method, however, attains the accuracy with a much simpler
computer program, requiring the simultaneous solution of two, instead of
four, integral equations, with the kernels of the two additional equations
having peak magnitudes of order 1/g2 versus 1/g for the original pair. The
numerical results by the present method were obtained with a minicomputer;
those of Ref. [2] for ki and kq» required a supercomputer.

Results for unequal circles are given in Tables 7, 8 and 9 for a/b = 4,
16,0. 'Exact’ results are not shown separately since these agreed exactly with
the computed results to the number of digits shown. This was accomplished

by using the modified MAQF (107) on both circles and taking N(%) = % N().

Actually, it was necessary to increase the number of points only on ¢, and
there only in the peak regions, as we have verified by using (107b) to increase
the point concentration there for a/b = 16, with a smaller value of N1. The
results in Table 7, however, were obtained with N = 120 on both circles, and
those in Table 8 with N = 600 on both at g/b = 0.01, although 40 points on the
smaller circle would have matched the accuracy attained with a/b = 1. Fewer
points were required at larger gaps.

The coefficients k1 in Tables 7 and 8 are seen to be given approximately
by (a/b)? followed by six decimals. As is seen from (39b), however, (a/b)? is a
known additive constant, and the remaining terms need to be calculated
accurately to only the usual number of seven significant figures. Similarly, in
solving the integral equations for the source distribution on the larger circle,
the known contribution to the distribution from the doublet of strength a2 at
the center of the large circle, 6o = (1/%) cos 81, would also subtract out the
additive constant (a/b)2 from the values of k; and require only the same
seven-digit accuracy for the remainder. This procedure can be generalized to
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apply to a noncircular cylinder by obtaining first the source distribution 6, on
the surface of that cylinder when the other cylinder is not present, and then
solving the pair of integral equations for the interaction source distribution c-
Oo-

Graphs of the force-coefficient data in Tables 4, 7, 8 and 9 are shown in
Figs. 8a to 8d. Here Cg1 denotes the coefficient of the force on the circle of
radius a when that circle has the velocity U; and the circle of radius b is at
rest, and Cps that for the force on the circle of radius b. These coefficients are
defined by

where the subscript '1' corresponds to the a-circle and 2' to the b-circle.
Similarly, when the a-circle is at rest and the b-circle is moving with velocity

Up, the forces are designated as F; and F; and the coefficients are defined by

* *

* 1 * F2

F1 pri CFz’pr§

For these special cases, we obtain from (15) and (16) withb =1

1 . 1. . * . 1. * .
CF] = iﬂ kl/ CFZ =T (i kl + klz), CF] =-1 (klz + EkZ)y CFZ = - ﬂkz (120)

Although the procedures for computing the results for a = o are not
presented until the next section, it is convenient here to consider this case as
the limit of the sequence of circles of increasing radii. Curves of Cg; and Cr2
do not appear in Figs. 8a and 8b since motion of the wall towards a stationary
cylinder would require an infinite added mass. We see that the forces are
always repulsive and approach infinity as the gap approaches zero. Values of

Cgp and C;*z are not shown explicitly in Table 4 for a/b = 1 since, by symmetry,
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we have C;l =-Cp2 and C;z = - Cf1. The graphs show that Cg and C;2 vary

monotonically with a/b for all values of g/b. Cgz and C;l also vary

monotonically, but only for values of g/b from 0 to 0.16 and 0.04 respectively.

When a/b = 1, Figs. 8a and 8b and Table 4 show that the force on the
stationary cylinder is about five times larger than that on the moving one at
g/b =1, and about 50 percent larger at g/b = 0.10. This indicates that it would
be easier to detect hydrodynamic interaction effects experimentally on the
stationary cylinder, for which the predicted value Cgz = 0.75 at g/b = 0.50 is
large enough to be readily measured. For other diameter ratios at g/b = 0.50,
the force coefficient on the large cylinder is greater no matter which of the
cylinders is moving.

6. Results for a circular cylinder (or a sphere) and a wall.

The case of a circular cylinder moving along the normal to an
impervious wall is the limiting case of a pair of circles as the radius of one of
the circles approaches infinity. Each of these large circles is taken to be at rest
as a — oo, so that g/a — 0, in contrast to the results for a/b = 16 in Table 8,
which are given to g/a = 6.25. Thus results for the present case, given in Table
9, should resemble those of Table 8 only for small gaps, say g/b < 1.0, at which
g/a<1/16.

As is well known, an alternative approach is to replace the wall by the
mirror image of the circle in it. This method transforms the problem to the
case of a pair of equal circles for which results are given in Table 4. Both
approaches will now be treated.

As a approaches infinity in (40b) and (41b), we obtain in the limit

e  sinh2{ : .
ko=1+23, _———sinhz(n+1)c =230 -1, kp=23> (121)
ki2=-2320), kiz=-ko (122)

47



Then, by (15) and (16),

. . . 1. 2 - 2
Fi =- (A1 + 3 Azg) Uj =- mpb2(kiz + 3 kU = mpb25,U;  (123)

Fp=- % Axn U% =- % npb2k; = - npbzing (124)

With b = 1, these give the force coefficients

F . .
Cr=—5=150 Cr=-13,0 (125)
pbU;

The value of { for given values of a, b, and ¢ can be obtained from (63),
which may be written as

cosh§=l+%+§(%+%§)

In the present case of a = =, we get

cosh{-1=2 sinhZ% -%  {-2simn? (—;‘5)” 2 (126)

To obtain };".2, we first apply (69) for a — <= to get

’ ood -2 oo -3 ’
2‘.2:}:1551“ =-2% T3 Ty

As a and c approach infinity in (69), this gives

. 2 - -
2,0 = T (/¢ =-F osch {5 v w,

The force coefficients (125), for the case of a cylinder moving normal to a wall
then become
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Cp=-Cpp=-2mcsch {ET T (127)

Next consider the two-equal-circle approach. By (14), the kinetic energy
of the fluid, with U1 =-Uj and A1 = Ay, is

Te = [A2(gd) - A12c(gc)]U2, gc=2g

and that for the half space with Uy = 0 is given by 2T = A2(g) U22 Here the

subscript ¢ indicates values for the pair of equal circles, and the other
quantities refer to the half space when the wall is present. Since Tc = 2T, we
obtain the simple relation Aj; = Azo¢ - A12¢ or, in nondimensional form,

ko) = ke - k12eE) (128)
Hence, differentiating with respect to g, we obtain
ez ) = 20koe G - kiG] (129)

The derivation of the results F; = - Fp in (123) and (124) was based on
the formulas for k1 and kj3 for a circular cylinder in (121) and (122). We shall
now show that Fj, the force on the wall, is also given by F; = - F» for bodies of
arbitrary shape.

According to the Lagally theorem [5], the force on a nonrotating body in
an irrotational flow can be expressed in terms of the strength and location of
the singularities within it, the velocities due to external mechanisms at their
locations, and the acceleration of the displaced fluid (which is zero in the
present case). Since the image body and the wall (considered as a circle of
infinite radius) contain the same set of singularities, the force must be the
same on both. But, by symmetry, the force on the image body is equal and
opposite to that on the actual one. Hence that is also true for the force on the
wall, as we wished to show.

Also valid for bodies of arbitrary shape are equations (123, 124, 128, 129),
the derivation of which did not depend on the body shape. Since F; + F2 =0,
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we now find, from (123) and (124), that the relation Azz = - A1 2, given in (129)
for a circular cylinder, also applies to arbitrary shapes. Thus, the
determination of the forces F; and F» on a body, approaching a wall at
constant speed requires only that the added masses be determined by the
integral-equation procedure that has already been described, applied to the
body and its mirror image.

For the case of a sphere moving away from a wall, we treat the wall as a
sphere of infinite radius. Then, as a approaches infinity in (75) and (76), we
obtain in the limit

1 - sinh3( 3
3
kip =-5 250 (131)

Then, by (15) and (16),
. 1. 2 4 . 1. . 2
Fl =- (Alz + '2' Azz) U2 =- 5 pr3 (k-lz + E kz) = ﬂpb323(C)U2

1 2 2

. . 2 . 2
Fy=-54y Uy =-3mpb’k; Up =- mpb°23(QU;

These give the force coefficients

2F, .
npb2U,

50



As for the case of a circle and a wall, i3(?;) can be expressed in terms of k;, and

. o - o 4
kyp. From (76), we obtain Z5(0) = I7 7, £5 = - 357" 1, ¢’ and then

-4

S5 =I5/¢ =-E eschlET T, 74 (133)

where ¢’ and 1, are given in (69) and (70).

7. Ellipse-circle combinations

The procedure developed for pairs of circular cylinders will now be
applied to the case of an elliptical cylinder approaching a circular one along
their line of centers. Since an exact solution is not available for this case, we
proceed immediately to the integral-equation for the source distributions
01(Q1) and 02(Q») formulated in (86) and (87), in which the first integral of (87)
over the circle ¢7 vanishes, as was shown in Section 5.

The peaks of the integrands when the gap is small were eliminated by

introducing the transposes of the kernels and locating the points P, and P,

defined in (103) and (104). Since c3 is a circle, the point P:z is again given by
(117); but to find P'l, one must determine the point on the ellipse at which the

distance from an exterior point P2 on the circle is a minimum. This can be

found from the condition that the line normal to the ellipse at P, passes

through the point P2(x2,y2). In terms of the parametric form of the equation
of the ellipse, x = a1 cos y, y = a3 siny, this gives

tan \v(P;) =y2/la1x2- (a‘;Z - a%) cos (P;)]

Since y is small in the region of the peaks, this equation can readily be solved
by iteration, with y = 0 in the right member as the first approximation.
Results for an ellipse approaching a circle are given in Tables 10 and 11.

In the former a1 = 2b and ap = b, in the latter a; = b, ap = 2b, where b is the
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radius of the circle, in terms of which the added masses and forces are
nondimensionalized. Comparison of Tables 4 and 10 shows that, although
the transverse dimensions and the asymptotic added masses as g — <« are the
same, the added mass and forces are appreciably less for the ellipse-circle pair.
On the other hand when Tables 4 and 11 are compared, it is seen that the
interaction effects are considerably greater for the ellipse-circle pair. These
results are reasonable since, with aj/aj = 2, the radius of curvature at the
leading edge of the ellipse is b/2, and with aj/az = 1/2, is 4b. The accuracy of
the results in Tables 10 and 11 was judged by the effects of increasing the
number of points on each body. To obtain the indicated accuracy, N = 300 was
used on both bodies in both cases.

8. Results for two spheres by method of integral equations

Two spheres of radii a and b are moving with velocities Uy and U
along their line of centers. We shall use two spherical coordinate systems,
(R1, 61, w1) and (Ry, 67, y3), with origins at the centers of the spheres at x = x;
and x = x3 for the spheres of radii a and b respectively. With the x-axis as the
polar axis, the spherical coordinates are related to a fixed rectangular
coordinate system by

x - Xj = Rj cos 6, y = R; sin 8 cos yj, z = R; sin 6; sin yj, i=1,2

with X2 - X1 =C.

Relative to the center of one of the spheres of radius a, we have

2
rpq = Rp + R - 2 ReRQG(P,Q)

where G(P,Q) = cos 0p cos 6Qq + sin Op sin 6Q cos (yp-yQ)

we see that G(P,Q) = G(Q,P). Then the kernels of the integral equation (98)
become

KP,Q) =- [

: [1-G@,QI/?
oRp TPQ RP=2

242 a2

-2 n-crQl-

; (134)
I'PQ
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We see that the kernel is symmetric; i.e. K (P,Q) = K(QP).

Next, when the points P and Q are on different spheres of radii a and b,

we obtain
r?’lQZ = (c- xp1 + xQ2)? + (yP1 - yQ2)? + (zP1 - 2Q2)?

=a2 + b2 + c2-2c(acos Op1 + b cos 9;22) - 2abG (P1,Q2), 6= -0

where

G(P1,Q2) = - cos Op1 cos 9&22 + sin Op1 sin 9;22 cos (Yp1 - YQ2)

d 1 1
K(Plle) =3 - P [a - c cos Bp1 - bG(P1,Q2)] (135)
K(Q2,P1) =- 2L __1 b o G(P1, Q)] (136)
P = Sz ~ P ¢ 8 2 12612

and similarly

2

Ipoqp = a2+b2+c2 - 2c(a cos Q1 + b cos 6;,2) - 2abG (P2,Q1)

G(P,Q1) =-cos 6{,2 cos 6Q1 + sin 9;)2 sin 8Q1 cos (y¥p2 - YQ1)

2 1 1 ,
KP2,Q0) =-5 201 = Pracn [b - ¢ cos Bp, - aG (P2,Q1)] (137)
0 1
K(Q1,P2) = [a - c cos Bg1 - bG (P2, Q1)1 (138)

"9aTP2Q1  13p2Q1

The integral equations then become, by (105) and (106),

4ro1(Py) + jsl [61(Q1) - o1(P1)] K(P1,Q1) dS1
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’ 0
+Js, [02(Q2) K(P1,Q2) - 02(P) K(Q2. Pl dSq2 = U —— (139
2 2 onp1

4no2(P2) + Jg, [02(Q) - 02(PD] K(P2,Q2) dSqz

0x
onp?

+ Js, [01Q1) K(P2Q0) - 01(Py) K(Q1,PY)] dSq1 = U2 (140)

in which 6p1’ and 0py’ at P; and P:,_ are given by (117), so that (139, 140) are in

the form for removing both the singularities of the kernels and the peaks of
the integrands.

Because of the axial symmetry, the ¢'s are not functions of y. We may
then integrate first with respect to yQ, and since the integration extends over
the entire circular section, we may take yp = 0. For bodies of revolution
moving in the direction of their axes of symmetry, it is known that the
integration over the polar angle y in the plane of transverse section can be
expressed in terms of elliptic integrals. We shall take advantage of this
property to reduce the computing effort required to obtain accurate results on
a 3-D problem, and will treat only the case of equal spheres, i.e, a = b.

First, then, we need to integrate the kernels of (139) and (140) with
respect to y. For the cases K(P1,Q1) and K(P2,Q>), consider (withi =1 or 2)

1- G(P;,Qi) =1 - cos Bp; cos 8qQ; - sin Bp; sin Bqj (2 cos? \EV’ 1)

1
=1 - cos (Bp; + 6Qi) - 2 sin Bp; sin Bg; sin2v, v = 5 (- )

sin Opj sin 0Qj

1 . 2
= 2 sin2 5 (8p + 0Q) [1 - £%(6p,8Q) sin2v], §PiQi = 1
sin2 5 (6p + 6Q)

Then by (134),
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2r 1 1 7t/2 )
g K(P;,Qy) dy =3 csc 5 (Bpi + 6Qi) g (1-Epii sin2v)1/2 gy

1 1 2
=20¢y (8pi + Opi) K(Ep;i) (141)

where K(EpiQi) is the complete elliptic integral of the first kind.

For the case a = b, the other four kernels, given in (135, 136, 137, 138),
are of the form

a[1-G(8,8,v)] - ¢ cos {g,}

KP,Q) = (142)
PQ (2a2[1-G(8,0",v)] - 2ac (cos 6 + cos 6") + c2}3/2
where 6 =61 and 6’ == - 07, and
1-G(0,8’,v) =1 + cos (0 - 6") - 2 sin 0 sin 6’ sin2v (143)
The numerator of (142) may then be expressed as
1 o 1 160
2 (ri?,Q + 2ac cos [e }-c2) = %2 [riz,Q - o(g + 4a sin? > {e h)
and since the denominator is riq, we obtain
1. 1 C 1 0
- —— in2 =
KPQ =5, Q3 (g +4asin®; {e Ml (144)
Also one can show that
r‘I?,Q =D2[1 - £2(8,0’) sin2 v] (145)
where
. e . e, . i 146
D? = [g + 2a(sin? 5 + sin? 5)]2 + a%(sin@ + sin 0')2 (146a)
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4a? :
£2(0,0) = Tz sin @ sin 6’ (146b)

We see from (144) and (145) that the integral of the first term of the kernel is
immediately expressible in terms of an elliptic integral. To verify that the
integral of the second term is also so expressible, we now show that

w2
J(1-£2) (1-E2sin2v)-3/2dv = E(§) (147)
0

where E(§) is the complete elliptic integral of the second kind,

The integrand of (147) may be written as

(1-€2 sin2v)-1/2 - E2¢c0s2v(1-E2sin2v)-3/2 (148)
Integrating the second term by parts, we obtain

w2 2
j §2C052V (1°§zsm2V)'3/2 dv = j &25in2v (1-&2 sinzv)-l/z dv
0 0

which, combined with the integral of the first term of (148), gives

/2
E(®) = [(1-E&2sin2v)1/2dv
0

as stated.

The integral of the kernel (144) with respect to y when P and Q lie on
different spheres may now be written in terms of elliptic integrals. We
obtain, by (145),

1 6
2c(g + 4asin? 5 {6 )

27 /2 )
[ KPQdy=4 [KPQdv= 2D KIE©,6)] -
0 0

2DI1-220,0)] E® (149
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The four integrals in (139, 140) can now be evaluated by multiplying the
results in (141) and (149) by a2sin6Q or a2sinfG, and integrating with respect

to 6Q1 or BIQZ from 0 to . These become

n
1 )
IpiQi = ({ [6i(Q)) - oi(Py)] sin 8qi csc 5 (Bqi + Opi) K(Epiqi) dOqi; i = 1,2 (150)

T + o 2a acE(Ep102)
Ipie = g [02(Q) - 2P 5 o, KEr - 3

2
Dp1g2 (1 - Ep1g2)

l ’ r 1 ’ ’
* [02(Q2) (g+4a sin? 5 0Q2 ) - 202(P,) (g + 4a sin2 5 8p1)]} sin 85, d6y; (151)

where, by (146),
D2, = [g + 2a (sin? = 6p1 + sin? 5 0.,)2
p1Q2 = [8 +2a (sin? 5 0p1 + sin? 5 8,)1 +
. . ’ 2
a2(sin Opy + sin 6Q2)2 =Dop1 (152)
and
2 sinOpisinfQj 2 ) ‘
i = Eipy i = 1.2 (153)
Sinzi(epi + 6Qi) v
2 4a2 L 2
&P‘IQZ = T— sin OP] sin 9Q2 = éQZPI (154)
P1Q2

Expressions for Ip2Q1, Dlz,le and g?’ZQl can be obtained from (151, 152, 154) by

interchanging subscripts 1 and 2.
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K(E) has a logarithmic singularity at £ =1 or &' = (1 - £§2)1/2) = 0. When
&2 is less than 1/2, K(§) and E(E) can be computed accurately and efficiently by
the expansions

2, 4

4
= —_ - '211
K@) = £n et n);’ a,, (4n e bp) & (155)
1 4 1 4 1
E@) =1+5(4n -é—’- 3) &2+ ng; an an+1 [ln-é-,- Gna1)(2ns2) - Pnl g§2n+2

2n-1 1.35..(2n-1) 1 1
an=Sn an1="37¢ 51 bn=bni+imnyy= I imy (156

For &2 less than 1/2, the series expansions

2
K@ =71+ Far, E=3(1- 3 5i em (157)

converge rapidly.

Since the integrands F(8) of (150) and (151) are not cyclicin 0 < 8 < =,
where 8 represents 8Q or 6, the MAQF cannot be used directly to evaluate

their integrals. We could generate a continuous cyclic function by defining
F(8) = F(2r-0) for ®* < 6 < 2n and then repeating this combination for
successive 2m-intervals to the left and right of the 0 to 2n range; but the
derivatives at the junction points 6 = 0, n, 2t would have opposite signs since
F'(6) = - F(2r-6). Hence the MAQF, which requires a smooth function, may
not be applied unless the slopes are zero there.

We have seen that the nonuniform MAQF transformation (107)
introduces the factor sin2 @/2 in the integrand, whizh gives zero derivatives
with respect to @ at ® = 0 and 2x, but not at @ = n. By replacing 6 and ® in (107)
by 26 and 2w, the transformation and its differential become

1
0=0w- 5 sin 2, do = 2sin? wdw (158)

and then
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n T
[ F(8) d@ =2 | F(0) sin2 wdw (159)
0 0

Since sin 0 is a factor of F(8), the zeros of the integrand of (159) at =0, &, 2n
are seen to be of third order. Hence not only the slopes but also the
curvatures of the extended integrands are zero at the junction points as a
consequence of the transformation (158). If a higher concentration of points
near 6 = 0 than that given by (158) is required, the transformations (107a) and
(107b) may be used, again with 6 and ® replaced by 26 and 2.

Results for k1, k12, fq, l.qz are given in Table 12, where calculated values
are compared with the exact ones. The derivatives were obtained by the same
procedure as for the circles, i.e., numerical differentiation with respect to the
parameter y by a five point central-difference formula, followed by the exact
derivative of y with respect to g, as is shown in (109). The results for ki and
ki practically agree to five decimals from g/b = 0.01 to 0.04, and to six
decimals at larger gaps; k1 and k2 agree to three decimals up to g/b = 0.03 to
four decimals up to 0.07, and to five decimals at larger gaps.

Results for k; and k,, are compared with those of Ref. [2] in Table 13.
The deviation from the 'exact' values is seen to be much less with the present
procedures, which were accurate enough for application of numerical
differentiation to obtain the added-mass derivatives given in Table 12. Only
exact values of these derivatives are presented in Ref. [2], indicating that their
procedure of solving the pair of differentiated integral equations could not
give adequate accuracy at small gaps, probably because the peaks of their
differentiated kernels are of the order of 1/g3.

SUMMARY AND CONCLUSIONS

The motivation for undertaking the present work was to evaluate the
accuracy of the interaction forces computed by the integral-equation approach.
For this purpose, the classical theory of successive images, for central impact
of pairs of circles or spheres, is available for obtaining highly accurate
numerical solutions, against which results from integral equations could be
compared. In the course of applying these approaches, new and significant
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advances in both areas were made and have been described. These will now
be summarized.

On the method of successive images, the following has been
accomplished:

1. A new and more rational derivation of Herman's formulas for the
doublet strengths than that given in his paper [10] is presented.

2. A parametric form of these formulas has been applied to derive new
truncation-correction formulas, with which the infinite series for the added
masses can be summed to a desired accuracy with many fewer terms.

3. A new asymptotic formula equating the mathematical parameter {
of the aforementioned parametric form to a polynomial in the
nondimensional physical parameter y (which is proportional to the square-
root of the gap g between the bodies) is derived, and shown to be highly
accurate at small gaps, and for equal circular cylinders or spheres, to be
usefully accurate up to g/b = 1.

4. Combining the truncation and asymptotic formulas yielded the
results that the series for the added masses, and those for their derivatives
with respect to the parameter {, both converge at g = 0, and asymptotic Taylor
expansions about g = 0, which display the added masses and their derivatives
at g = 0, are given. These properties led to the new resulig’that the derivatives
of the added masses with respect to g, for small values of v, vary as g-1/2 for
circular cylinders and as -£n g for spheres. In both cases, this implies that the
repulsive forces approach infinity, verifying the well-known irrotational-flow
paradox that the bodies would never meet.

5. The need for considering the property of uniform convergence of
the series for the added masses and their derivatives is discussed in the text.
It is proved that these series are uniformly convergent in the closed region 0
< g < =, indicating that the added masses are continuous functions of g at g =
0; and that the series for their derivatives with respect to { are uniformly
convergent in the open region 0 < g < o, i.e., although this derivative series
converges at g = 0, the convergence is not uniform. This implies that the



derivatives of the added masses may be discontinuous at { = 0, as is shown in

" the text for a pair of circular cylinders.

On the method of integral equations, three new procedures were
developed to obtain more accurate solutions. The first of these was required
at small gaps to eliminate the peaks of the four kernels of the two integral
equations. It was shown that the transposes of these kernels eliminate not
only their singularities but also their peaks, which are of the order of 1/g for
two-dimensional and of 1/g?2 for three-dimensional bodies of general shape.
This left a residue of much smaller peaks due to the rapid variation of the
source distribution in the gap region when the gap is small. These were
treated by applying a quadrature formula, described in the next paragraph,
which concentrates many points in the small neighborhood of the smaller
peaks.

In the second procedure, the 'most accurate quadrature formula,’
which requires a smooth, cyclic integrand and uniform intervals, was
modified by changing the variable of integration, so that the integrand
remains cyclic, uniform intervals are taken in the new variable, and many
points of the original variable are concentrated in the desired region. A
sequence of such transformations, of successively increasing point
concentrations in a small region, is presented. With a slight modification,
this nonuniform MAQF also served to evaluate accurately the noncyclic
integrals of the two-sphere problem.

The third procedure was developed in order to improve the accuracy of
the added-mass derivatives obtained by numerical differentiation of the
added-mass data. As is described in the text, this procedure, which is suitable
for general shapes, requires accurate solutions of the integral equations, and is
suggested by the asymptotic formulas for the added masses at small gaps.

By means of these new procedures, the minimum gap at which
accurate results could be obtained was reduced to about one-tenth of those
reported in the original work on this problem for the Mobil Research and
Development Corporation. Results for circle pairs of diameter ratios 1,4,16
and e, two ellipse-circle pairs and a pair of equal spheres are presented. The
treatment of the infinite-diameter ratio (a circle approaching a wall), which is
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also applied to a sphere and a wall, yields results for the added masses and
forces on bodies of arbitrary shape. All the other applications were to two-
dimensional and axisymmetric forms, for which the integral-equation
approach yielded highly accurate solutions. An IBM RISC/6000 was used to
obtain the numerical results.
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Table 1. Example showing truncation correction by trapezoidal integral

N 1

N R(N) I 3+ ROV
10 0.095238 1.645006
100 0.009950 1.644934
1000 0.001000 1.644934

Table 2. Calculation of -k12 with truncation correction Ry for a=b.

g/a =0.0001 g/a =0.001 g/a=0.01
N Ri2 -k12** Ri2 -k12 Ri2 -k12
10 .0383183 .8125634 | .0228071 .7914781 |.0030591 .7282811
20 .0157424 .8125323 | .0051146 .7914469 |.0000553 .7282603
30 .0083784 .8125290 | .0013646 .7914436 |.0000010 .7282599
40 .0049347  .8125281 | .0003793 .7914429 0
50 .0030590 .8125278 | .0001066 .7914427
70 .0012677 .8125276 | .0000085
100 | .0003656 .0000002
200 | .0000066
300 | .0000001 . . . . .
oo 0 .8125275 0 7914426 0 7282599

.2 N
* ki2=13%; n1+Ri2

Table 3. Values of ki by various methods at g/b=0.01 fora=b

ki
Integrand peaks Nonuniform N =40 N =100
removed? MAQEF
1. Yes Yes 1.375338 1.375338
2. No, only kernel Yes 1.0177 1.3715
peaks removed*
3. Yes uniform 1.3790 1.3785
4. No Yes 6.8110 1.3748
5. No uniform diverged  diverged

*Used o1(0) and oy(r) instead of 61(81p’) and 62(627p)
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Table 5. Comparison with Ref [2] of values of k; and ki3 for equal circles.

k1 -k12

g/b exact present* Ref. [2]**] exact present Ref. [2]

int. eq.  int. eq. int. eq. int. eq.
0.01 | 1.375338  1.375338 1.3713 0.728260 0.728260  0.7214
0.02 | 1.341620  1.341620 1.3400 0.692409  0.692409  0.6901
0.03 | 1317390  1.317390 1.3169 0.666057 0.666057  0.6653
0.04 | 1.298030  1.298030 1.2979 0.644586 0.644586  0.6443
0.05 | 1.281755  1.281755 1.2817 0.626212  0.626212  0.6261
0.06 | 1.267655  1.267655 1.2676 0.610023 0.610023  0.6100
0.07 | 1.255188  1.255188 1.2552 0.595480 0.595480  0.5955
0.08 | 1.244005  1.244005 1.2440 0.582231 0.582231  0.5822
0.09 | 1.233862  1.233862 1.2339 0.570034 0.570034  0.5700
0.10 | 1.224583  1.224583 1.2246 0.558711 0.558711  0.5587

*Calculated with a 40-point nonuniform MAQF, and all integrand peaks removed.

**Calculated with three Gauss quadrature formulas, of order 20 (see condition 2 of Table 3).

Table 6. Comparison with Ref [2] of values of f<1 and f<1z fora=b=1.

-k1 k12

g/b exact present* Ref. [2] exact present* Ref. [2]
int. eq. int. eq. int. eq.  int. eq.

0.01 | 4.220480 4.22054 410983 | 4.434339 4.43439 4.32371
0.02 | 2.773348 2.77335 2.77325 | 2986088 298609  2.98597
0.03 | 2.137694 2.13769 2.13769 | 2.349315 234931  2.34931
0.04 | 1.761898 1.76190 1.76190 | 1.972399 1.97240 1.97240
0.05 | 1.507534 1.50753 1.50753 | 1.716914 1.71691 1.71691
0.06 1.321292 1.32129 1.32129 | 1.529551 1.52955 1.52955
0.07 | 1.177713 1.17771 1.17771 | 1.384850 1.38485  1.38485
0.08 | 1.062909 1.06291 1.06291 | 1.268923 1.26892  1.26892
0.09 | 0.968580 0.96858 0.96868 | 1.173472 1.17347 1.17347
0.10 | 0.889422 0.88942 0.88942 | 1.093190 1.09319  1.09319

*Calculated from a five-point central-difference formula, for which values of ki and
k12 at g/b = 0.005 and 0.007 were required and computed.
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g/b

0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.120
0.140
0.160
0.180
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.600
0.700
0.800
0.800
1.000
1.200
1.400
1.600
1.800
2.000
2.500
3.000
4.000
5.000
6.000
8.000
10.000

Table 9. Results for a circle and a wall; a = ==,

ka

2.034029

mh b b b b ok md ek b b b b b b A b b h mdh b ed b b eh ad b oh b eh ed h ed b b b b -

.9426186
.877678
.826236
.783295
.746306
.713768
.684706
.658447
.634506
.592194
.555711
523729
.485338
.469882
.416147
.372872
.337092
.306931
.281126
.258781
.222018
.193062
.169718
.150550
.134576
.109603
.091129
.077037
.066022
.057238
.041703
.031762
.020206
.013987
.010257
.006192
.004141

k2
-11.51887
-7.46859
-5.70168
-4.66366
-3.96522
.3.45672
-3.06681
.2.75665
.2.50308
-2.29131
-1.95648
-1.70265
-1.50298
-1.34151
-1.20809
-0.95764
-0.782892
-0.65439
-0.55618
-0.47898
-0.41694
-0.32407
-0.25861
-0.21062
-0.17435
-0.14628
-0.10637
-0.08006
-0.06191
-0.04893
.0.03937
-0.02435
-0.01612
-0.00814
-0.00468
-0.00294
-0.00137
-0.00075

70

-3
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2

-2.
-2.
-2.
-2.
-2.
-2.
-2.

-2
-2
-2
-2
-2
-2
-2
-2
-2

ky2
.03403
.94262
.87768
.82624
.78330
74631
71377
68471
65845
63451
59219
55571
52373
.49534
46988
416158
.37287
.33709
.30693
.28113
.25878
.22202
18306
16972
15055
13458
10960
09113
07704
.06602

.05724"

.04170
.03176
.02021
.01399
.01026
.00619
.00414

-18
-11
-8
-7
-6
-5
-4
-4
-3
-3

-3.
-2.
-2.
-2.

-1
-1
-1
-1
-0
-0

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.
-0.

-0

-0.
-0.
-0.
-0.

CF1
.09380
73164
.95618
.32567
.22856
.42980
.81733
.33014
.93183
.59919
07323
67452
36088
10724
.89767
.50426
.22981
.02791
.87364
.75238
65493
50905
40623
33084
27386
22977
16709
12576
09724
.07685
06185
03825
02533
.01279
00735
00461
00216
00118

F2
18.09380
11.73164

8.85618
7.32567
6.22856
5.42980
4.81733
4.33014
3.83183
3.59919
3.07323
2.67452
2.36088
2.10724
1.89767
1.50426
1.22981
1.02791
0.87364
0.75238
0.65483
0.50908
0.40623
0.33084
0.27386
0.22977
0.16709
0.12576
0.09724
0.07685
0.06185
0.03825
0.02533
0.01279
0.00735
0.00461
0.00216
0.00118
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Table 13. Comparison with Ref. [2] of values of k1 and k12 for equal

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

spheres.
k1 - k12

'exact' calculated Ref. [2] calc. | 'exact’ calculated Ref. [2] calc.
0.570162 0.570146 - 0.216292 0.216276 -
0.565138 0.565129 0.5614 0.209728 0.209719 0.2063
0.561022 0.561018 0.5591 0.204085 0.204080 0.2025
0.557477 0.557474 0.5562 0.199028 0.199025 0.1981
0.554343 0.554341 0.5540 0.194396 0.194394 0.1943
0.551527 0.551526 0.5512 0.190098 0.190097 0.1900
0.548968 0.548967 0.5486 0.186071 0.186070 0.1860
0.546625 0.546625 0.5464 0.182273 0.182273 0.1823
0.544464 0.544464 - 0.178672 0.178672 -
0.542461 0.542461 0.5421 0.175244 0.175244 0.1752
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Figure 1. Definition sketch of two circles or spheres moving along their
line of centers for method of successive images.
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Figure 2. Graphs of added-mass coefficients against parameter (.
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Figure 4. Illustration of procedure for eliminating peaks of integrand.
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Figure 7. Magnified graphs of Fig. 6 with peaks of integrand removed.
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Figure 8. Force coefficients for a/b = 1, 4, 16 with smaller circle at rest.
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Figure 9. Force coefficients for a/b = 1, 4, 16, == with larger circle at rest.
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